Institut fur Informatik
der Technischen Universitat Munchen

A Compression Engine for Multidimensional
Array Database Systems

Andreas Dehmel

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Bernd Radig
Priifer der Dissertation:
1. Univ.-Prof. Rudolf Bayer, Ph.D.
2. Univ.-Prof. Dr. Thomas Huckle

Die Dissertation wurde am 11.12.2001 bei der Technischen Universitat Miinchen eingereicht
und durch die Fakultat fiir Informatik am 09.04.2002 angenommen.

Abstract:

Multidimensional array data can be found in many areas, ranging from classic applica-
tions like digital image and video data, over spatial and spatio-temporal fields commonly
used in medical research, scientific computing and numerical simulation, to abstract
high-dimensional data cubes in e.g. OLAP. While traditionally all these data types have
been treated as entirely different entities with specialized, often file-based processing tools,
the multidimensional array DBMS RasDaMan unites them under a common framework
and provides typical database services like a transaction concept and a query language.
One thing most multidimensional arrays have in common and which clearly sets them
apart from objects typically found in relational DBMSs is their large data volume; this
property makes compression very attractive to reduce storage requirements and 10 times,
and it also allows compression to work more efficiently than for small data units.

The topic of this thesis is the design and implementation of a compression engine for
generic multidimensional array data, suitable for integration into the RasDaMan database
kernel. There are no standard compression techniques for multidimensional arrays except
for bytestream-oriented approaches, which however fail to exploit properties such as
correlations between spatially neighbouring cells or across channels, therefore new or
generalized algorithms are needed to improve compression rates. Like raster images, many
types of multidimensional arrays have a spatial or spatio-temporal interpretation, so image
compression techniques can be used as a design template for parts of the compression
engine, leading to a standard two-layer architecture with a model layer which transforms
the data to exploit correlations and a compression layer which compresses the transformed
data using existing standard techniques. The resulting system has an easily extendable
modular design and unites compression techniques with different levels of complexity under
a common interface for lossless as well as lossy, and storage- as well as transfer compression.

The main part of this thesis deals with the development of different model layers for
the compression of multidimensional arrays, including various kinds of predictors and a
generic wavelet engine (mainly) for lossy compression with arbitrary quality levels. The
work closes with an in-depth performance evaluation of the compression engine’s major
components on a selection of different test data with 2 to 4 dimensions from application
areas including medicine and scientific computing, which proves that the developed model
layers can help improve compression rates considerably and that lightweight compression
can also improve total system performance by reducing transfer and 1O cost.

Acknowledgements

Writing a thesis is a long process and while some aspects of the work are rather tedious
it is also a tremendously satisfying experience to see it develop from the first rough draft
to the consistent whole you see before you. The environment a thesis is written in plays
a major role in how successful the effort will turn out to be, therefore I'd like to take
the time to thank everybody who helped me directly or indirectly to finish this work,
apologizing in advance to anyone I might have forgotten.

First I'd like to thank those who’ve known me the longest and strangely enough still
put up with me, my parents Wilfried and Elfriede Dehmel, for continued support over the
years at university and never pushing me one way or another; also for putting up with the
occasional loud rock music and the sound of my concert guitar at 3am, of course.

Next up I'd like to thank the people I worked with at the database faculty of the
Technical University of Munich while the thesis took shape, in particular my colleagues
at FORWISS (past and present) who provided a wonderfully informal and support-
ive working environment I will truly miss. Most of all I'd like to thank the other
RasDaMan developers at FORWISS who I naturally worked most closely with: those
who came before me, Paula Furtado, Roland Ritsch and Norbert Widmann, as well
as our youngsters Karl Hahn and Bernd Reiner who will follow in our footsteps one
day. Working in this team was a real pleasure. A very warm thanks also goes to Peter
Baumann, the man who gave birth to the entire RasDaMan idea and left FORWISS
several years ago to turn it into a commercial product with his company Active Knowledge.

I’'d also like to thank my friend Michael Bader for proofreading this thesis and his
valuable input on document structure and fine-tuning of the layout. Furthermore I want
to thank my doctoral thesis supervisor Prof. Rudolf Bayer for supporting this thesis and
his sharp eye when it came to inconsistent equations; his input also proved very helpful in
ironing out the remaining ambiguities and loose ends.

In closing I'd also like to thank the Open Source community for their efforts in providing
free and most of all open standards compliant software, which allowed me to produce every
single part of this thesis on the platforms of my choice in a straightforward way. Foremost
of all I'd like to thank Donald E. Knuth in this context, whose work on TEX laid the
foundation for what is still the only truly professional document processing system, which
allowed me to concentrate on the important issues rather than being delayed by tedious
footwork.

Contents

1 Introduction
1.1 Motivation
1.2 Compression Basics
1.3 Related Work
1.4 Structure
2 Data Model and Terminology
2.1 Multidimensional Data L
2.2 Multidimensional Arrays
2.3 Operations on Multidimensional Arrays
2.3.1 Spatial Transformations,
2.3.2 Base Type Projections oL
2.3.3 Cell Operations
2.4 TImplementation of MDD in RasDaMan
3 Compression Engine Architecture
3.1 The Compression Layer.
3.1.1 The Compression Streams
3.2 The Transformation Layer
3.2.1 The Transformation Classes
3.3 Wavelets and Multiresolution Analysis
3.3.1 Wavelet Examples oo
3.3.1.1 Numerical Example, 1D
3.3.1.2 Image Coding Example, 2D
3.3.2 Mathematical Background
3.3.3 Wavelet Implementation Aspects
3.3.4 The Wavelet Class Hierarchy
3.3.4.1 Lossless Wavelets
3.3.4.2 Quantizing Wavelets
3.4 Quantization
3.4.1 Wavelet Error Propagation,
3.4.2 Homogeneous Band Quantization
3.4.2.1 Band Iterators oL

o O o ot Ot

CONTENTS

3.4.2.2 Quantizers 69

3.4.2.3 Quantization Statistics 70

3.4.3 The Generalized Zerotree 72
3.4.3.1 The 2D Zerotree Structure 73

3.4.3.2 Encoding and Tree Alphabet 75

3.4.3.3 Encoding Example o000 77

3.4.3.4 The Generalized Zerotree Structure 80

3.4.3.5 Implementational Issues 80

3.4.3.6 Aggregation for More Efficient Encoding 85

3.4.3.7 Encoding Variants and Alphabets 87

3.4.3.8 Termination Criteria for Encoding 88

3.5 Predictors 89
3.5.1 Interchannel Predictors 91
3.5.2 Intrachannel Predictors 93
3.5.3 Predictors in the Compression Engine 95
3.5.4 Predictors and Lossy Compression 96

3.6 Dynamic Parameter System 98
3.7 Transfer Compressiono 99
Evaluation and Results 103
4.1 Test MDD and Conventions 103
4.2 Lossless Compression 106
4.2.1 Relative Sizes and Timings 106
4211 RLE 106

4212 ZLib . ..o 107

4.2.1.3 Channel Separation 107

4.2.1.4 Haar Wavelet oL 108

4.2.2 Predictor Usage 109
4.2.2.1 Intrachannel Predictors 109

4.2.2.2 Interchannel Predictors 111

4.2.3 Conclusions for Lossless Compression 112

4.3 Lossy Wavelet Compression 113
4.3.1 Relative Sizes and Timings 114
4.3.1.1 lena 115

4.3.1.2 cnig 117

4.3.1.3 tomowsmall 119

4.3.1.4 brainsmall 120

4.3.1.5 moviesmall oo 121

4.3.1.6 temperatureo 123

4.3.1.7 dkrzdd 125

4.3.2 Quantization Comparisons 127
4.3.3 Compression Stream Comparisons 130

4.3.4 Error Propagation L 131

CONTENTS 3

4.3.5 Predictor Usage 133

4.3.6 Is Lossy Good Enough? 134

4.3.7 Conclusions for Lossy Compression 137

4.4 Transfer Compression 138

5 Conclusions and Future Work 141
Bibliography 145
A Proof for Lossless Haar Wavelets 151
B Wavelet Filters 153
B.1 Daubechies Wavelets 153
B.2 Least Asymmetric Wavelets L 155
B.3 Coiflet Wavelets 157

C Compression Parameters 159

CONTENTS

Chapter 1
Introduction

The Road goes ever on and on

Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.
And whither then? I cannot say.

J.R.R. Tolkien, The Lord of the Rings

1.1 Motivation

Integrating compression in Database Management Systems (DBMS) has not received very
much attention so far. The main reason for this is that the benefits of compression in
traditional, relational DBMSs (RDBMS) are rather limited due to the nature of relational
data which typically consists of small units like numbers or short strings, which have a
size of several bytes rather than kilo- or even megabytes. Compressing these small units
individually results in very poor space savings, whereas grouping units into compounds
and then compressing them improves the space savings per unit considerably, but burdens
the system with much higher random access times, as will be shown below. This is often
unacceptable since the resulting system is usually expected not to be noticeably slower
despite the compression/decompression overhead, but possibly even faster due to reduced
data size which allows more information to be transfered in fewer 1O operations.
Compression is always a tradeoff between savings in storage space and compression
overhead, where on average complex compression algorithms save more space while taking
longer, whereas simpler algorithms compress worse but are faster; it is therefore obvious
that in order to minimize compression overhead, simple algorithms should be chosen. We
will also see that fine access granularity, as is typically required for RDBMSs, is another
point in favour of simple compression variants as well. In contrast to RDBMSs, array
DBMSs (ADBMS) deal with much larger units which makes compression considerably

b}

6 CHAPTER 1. INTRODUCTION

more efficient as well as more attractive for the space savings alone; it also encourages the
use of more advanced compression techniques, even lossy ones which have never been an
option in RDBMSs, in the same way that lossy compression is viable for images but not
for text.

Compression aims to minimize the redundancy in data by finding a representation for
the data that requires less storage. This is often an adaptive process that performs better
the more data it processes, i.e. a large text compressed as a whole will usually have a higher
compression ratio than any subset of the text, depending on the compression algorithm
used. Analogously, while all data contained in a relational table may compress well in
its entirety, the individual attribute values are typically too short to allow gathering any
statistically meaningful information to aid compression. The techniques used for the com-
pression of single attribute values are therefore very basic since more complex approaches
like adaptive arithmetic coding can’t accumulate enough statistical data to outperform the
simpler and therefore faster techniques.

The alternative of grouping together attribute values to allow more efficient compres-
sion severely compromises execution time because accessing any value contained in such
a compound structure requires uncompressing the whole, or at least all data up to the
desired value, since compressed data normally does not allow random access any more.
Moreover, updating data in a compressed format is not localized, i.e. changing a local part
in the uncompressed data usually implies global changes of the compressed data, typi-
cally from the point corresponding to the start of the update of the uncompressed data to
the end of the compressed data stream. Caching uncompressed compounds can alleviate
this phenomenon in some cases, but introduces other problems like an increase of mem-
ory requirements as well as more complex 10 and transaction management. Considering
these points it comes as no surprise that there has been little research on compression in
traditional DBMSs and the work done on the subject has focussed on relatively simple
algorithms, some of which will be introduced in the Related Work section on page 10.

Not all DBMSs are relational, nor do all systems require as fine an access granularity,
however. Array DBMSs deal with rastered data of varied dimensionality and differ con-
siderably from traditional DBMSs both in terms of access granularity and data volume
typically transfered to clients. Whereas the access granularity of RDBMs is in the area
of bytes, for array DBMSs it is in the area of kilobytes or even megabytes, which makes
these systems very interesting for compressed storage. The high data volume transferred
to client applications also makes transfer compression a viable approach. Moreover, for
multidimensional data there are often local correlations between data samples which can
be exploited by compression, like for instance a rectangular area of uniform colour in an
image which will compress better if the compression algorithm is aware of the 2D nature of
the source data rather than being applied to a sequence of 1D data sequences. Things like
this are usually resolved in a model (or transformation) layer which transforms the original
data according to a data model into a different (possibly similar, i.e. lossy) representation
which compresses better.

RDBMSs can only handle vector data efficiently, which can be translated into tuples
containing coordinate attributes and value attributes. However, many kinds of data can be

1.1. MOTIVATION 7

modelled efficiently as multidimensional arrays, especially dense data, of course; but with
ever increasing memory capacity, even modelling sparse data as multidimensional arrays
becomes feasible, especially with the addition of compression, since sparse representation in
the form of vectorized data is a kind of offset compression in itself. In [44], for instance, this
development is quoted in the context of visualization to predict a move away from surface-
oriented models (vector) to volume-oriented models (arrays) in a similar way as raster
images have grown ever more popular compared to vector graphics in many cases, especially
when it comes to digital representations of real world phenomena, typical examples of which
are sampled analogue data such as images, volumetric data like tomograms, or simulation
data (spatial or spatio-temporal, like for instance fluid flow or climate simulations). The
disadvantages of dense modelling, foremost of all memory requirements, are becoming less
relevant as more memory is readily available; in many cases the vector data used in e.g.
visualization has to be calculated from a dense representation like a 3D data cube anyway
(e.g. isosurface algorithms [34] which calculate a triangulated surface from 3D array data).
At the same time the advantages of dense data modelling are becoming more and more
attractive in many application areas:

e compact storage (at least for dense data), i.e. no coordinate overhead because the
coordinates are implicitly given by the offset in the data and the linearization scheme;

e constant access time of arbitrary coordinates independently of the data distribution,
which also includes finding neighbouring cells in constant time.

Returning to the example of visualization, volume rendering has considerable advan-
tages compared to surface-oriented (= vector-oriented) approaches as it allows exploring
internal structures [44]. In numerical simulation, using arrays rather than vectors for
storage allows simpler and more efficient algorithms for the solution of partial differen-
tial equation systems. Using hierarchical grids makes it possible to use more sample points
within areas of rapid change than in areas with little activity, thereby addressing the major
problem of dense modelling; wavelet-based compression implicitly uses a similar approach,
as will be shown later in section 3.3.

Naturally, dense modelling can’t replace vector data entirely, especially when the co-
ordinate system is not discrete but real-valued as in CAD systems or to a certain extent
documents, although thanks to specialized compression techniques documents are actually
becoming a borderline case [8]; it must be added, however, that rasterized documents are
mostly of interest to digital libraries where the vector data is not available or never existed
in the first place. Looking especially at the developments in visualization and numerical
simulation, there is a clear trend away from vector data towards array data.

The object of this work was the implementation of a compression engine for the multi-
dimensional Array DBMS RasDaMan, which was originally developed at FORWISS and
supports data of arbitrary dimensionality and base type. Data is modelled as multidimen-
sional arrays, i.e. dense storage; the addition of compression capabilities to the DBMS also
allows sparse data to be handled efficiently, however. There is a wealth of literature on

8 CHAPTER 1. INTRODUCTION

specialized compression, especially the compression of raster images, i.e. 2D arrays over a
small number of possible base types, but there is scarcely any work on integrating these
techniques into DBMSs or similar products dealing with multidimensional arrays. Further-
more, the approaches are usually restricted to a specific number of dimensions — foremost
of all 2D for images — which requires generalization before they can be integrated into a
truly multidimensional system. The purpose of this thesis is

1. the design of a generic compression framework for storage- and transfer-compression
and its integration into the kernel of a multidimensional Array DBMS, RasDaMan
in this case;

2. the evaluation of compression classes and the inclusion of promising candidates in
the compression framework. The main focus here lies on techniques developed in
image compression, because many MDD show exactly the same properties exploited
in image compression, foremost of all local smoothness caused by correlations between
neighbouring cells;

3. provide compression algorithms with different properties dependening on the appli-
cation. For transfer compression, (de)compression overhead is usually the decisive
factor, whereas for long-term storage it is the compression ratio. For mostly read-
only data an algorithm with asymmetric complexity may be ideal, such as (adaptive)
dictionary techniques where compression can take considerably longer than decom-
pression.

4. performance measurements on the resulting system and evaluation of the various
compression classes with respect to the data types they are applied to and the sce-
narios they are used in (for instance storage compression vs. transfer compression).

The goal in integrating a compression engine into the DBMS kernel is to reduce storage
requirements on one hand as well as transfer times on the other. As always in compression,
the trade-off between storage reduction and compression overhead plays a central role and
will be evaluated in more depth in sections 3.7 and 4.4.

1.2 Compression Basics

The fundamental idea of data compression is to find shorter — and in case of lossy com-
pression approximate — representations for given data (= a sequence of symbols). Without
compression, the number of bits required for a symbol is determined by the data type of
the symbol, where typically only a few different types are supported by computer systems,
regardless of the actual symbol values. While this property allows very fast data access, it
usually takes up more storage than strictly required, for instance when only the 26 lower
case characters appear in a data stream but 8 bits have to be used for storage.

In lossless compression there is a hard limit on achievable compression, determined
by the so called entropy of the data. This part of information theory was introduced by

1.2. COMPRESSION BASICS 9

Shannon [48] in 1948 where the entropy H of a sequence S of independent, identically
distributed symbols over an alphabet A = {X;,..., X,,} with probabilities P(X;) was
defined as

m
H(S) = —ZP(Xi)logP(Xi). (1.1)
i=0

The entropy represents the average amount of storage space per symbol (= rate) re-
quired to encode S losslessly. The unit of the storage space depends on the base of the
logarithm function in equation (1.1); typically log, is used, in which case the entropy is
the average number of bits per symbol. Shannon proved that it is impossible for any com-
pression algorithm to encode a given symbol sequence in fewer bits than specified by the
entropy, provided the assumption about the independence of the symbols holds.

In many cases, the symbols are dependent, however. A typical example of this is
of course text, where preceding symbols severely restrict the possible values of following
symbols, for example the probability of a vowel following a ”th” in an english text is
considerably higher than that of another consonant. Symbols are often correlated in other
cases as well, such as in "smooth” signals where the next symbol only differs from the
preceding one by a small amount which can be coded in fewer bits than the actual symbol
value. These dependencies are usually resolved via a data model, for instance ”english
text” or "smooth values” or ”values lying approximately on a straight line” etc. The
better a model matches a symbol sequence the better this sequence can be compressed,
even well below the entropy based on the assumption of independent symbols. Therefore
most modern compression techniques consist of two layers, a top layer which transforms
the data according to a data model, and a bottom layer which actually compresses the
transformed data; this architecture will be discussed in more depth in chapter 3.

There is a very limited number of traditional techniques in the bottom layer and even
modern compression techniques rely on one of these for actual data compression. In con-
trast, there is a large number of data models in the top layer and most "new” compression
techniques introduce new algorithms in the top layer only, this thesis being no exception.
Traditional data compression techniques can be divided into four elementary techniques
and two basic classes which may also be combined to improve the compression ratio (and
often are so); I will only give a short overview here since they will be covered in much more
depth in chapter 3.

Pattern-oriented techniques:

RLE: (Run-Length Encoding) compresses consecutive symbols of the same value.
Very low complexity, but also relatively poor compression ratio for dense data;

Dictionary Techniques: find patterns in the symbol sequence and replace these
literal patterns with references into a dictionary. Very high complexity during
compression, but usually a good compression rate;

10 CHAPTER 1. INTRODUCTION

Variable-length coding:

Huffmann Coding: represents symbols with high probability with fewer bits than
those with lower probability, thereby achieving data reduction. Because every
symbol must be represented by an integral number of bits, only symbol proba-
bilities which are (negative) powers of 2 can be modelled exactly;

Arithmetic Coding: the current state-of-the-art in variable length coding which
recently superceded Huffmann coding as the de-facto standard. Arithmetic
coding represents a symbol sequence of arbitrary length by a number in the unit
interval [0, 1] with arbitrary precision. By representing symbol probabilities as
subintervals of the unit interval with a width proportional to their probability,
arbitrary symbol probabilities can be modelled exactly;

An important property of these compression techniques is whether they are static or
whether they can adapt to the data they are applied to. For example a dictionary technique
could use a static dictionary or build the dictionary during operation; or the variable-
length coding techniques may need to know the probability distribution in advance or
they may adapt the probabilities according to the data automatically. In some cases, like
text in a natural language, static variants are usually sufficient or actually better than
adaptive ones because the sub-optimal "learning” phase of the adaptive process can be
disposed of and the dictionary doesn’t have to be stored with the compressed data. But
in the majority of cases — especially when compressing binary data — adaptivity is an
important criterion because no generally applicable dictionary or probability distribution
exists. Regarding adaptivity, all dictionary techniques that are in common use today are
adaptive. Huffman coding is very hard to use adaptively because the Huffman tree has to be
fully materialized (and therefore constantly recalculated for adaptivity), making adaptivity
very expensive. Arithmetic coding can be made adaptive with much less overhead, which is
another substantial advantage over Huffman coding: even one of the first implementations
of arithmetic coding was adaptive [63].

Typically, compression in the bottom layer is a combination of a pattern-oriented tech-
nique followed by variable-length coding, e.g. for a compact representation of references
in dictionary coding like in the ZLib compression library [67] where dictionary offsets and
lengths are Huffmann-coded.

1.3 Related Work

There are not many publications on the subject of compression in databases and the exist-
ing ones are based on mostly text-based databases like RDBMSs. As noted in section 1.1,
the situation regarding compression in traditional, text based DBMSs differs considerably
from that in an Array DBMS, where typically large blocks of contiguous data are processed
and transferred in one go rather than single cell values. However, the basic goals of using
compression in a DBMS are the same for all kinds: reduction of storage and in addition
a potential 10 speedup due to the reduced data volume. I will therefore discuss some of

1.3. RELATED WORK 11

the literature on compression in RDBMSs here. It must be noted that the older the lit-
erature gets the less relevant its conclusions usually are from today’s perspective because
what used to be an expensive compression technique at that time may well be considered
light-weight compression today.

The newest of the publications introduced here is [16] and is actually more about
database normalization than compression in the classical sense. The idea introduced there
is to reduce the data volume by adding an indirection level for attributes which can have
a limited number of different values, i.e. rather than encode the attribute value inside the
table, the attribute becomes a reference into an additional dictionary table. The example
given there is a table encoding computer chip specifications where one field of characters
can take on the values CMOS and TTL only. These can be “compressed” by using a dictionary
table containing these two possible values and transforming the original table by storing
the offset into this dictionary table in place of the attribute value, which can be done in
just 1 bit in this example. While some of the most widely used compression algorithms like
LZ77 [64] and LZ78 [65] are based on the idea of a dictionary, it still seems odd to categorize
transformations like the above as compression rather than database normalization. There is
common ground between schema design and compression in that good schema design strives
to minimize redundancy (at least when ignoring preaggregation), just like compression;
nonetheless what this paper actually describes is much closer to schema design or even
plain programming style than to (database) compression.

A paper covering actual compression in a RDBMS is [62] which introduces several com-
pression techniques, discusses the ones chosen in more depth and concludes with measure-
ments after integrating the compression engine into their AODB system. Low compression
overhead and fine access granularity are stressed as points of primary importance from the
beginning. Compressed tuples are divided into five fields with different properties, namely

1. values of fields compressed to constant length (no address calculations), e.g. using
dictionary techniques with a known dictionary size;

2. lengths of all fields compressed to variable length (note that the length of this section
is also of constant length);

3. values of uncompressed fields of constant length (this section is of constant length
t00);

4. values of fields compressed to variable length;

5. string values of VARCHAR fields; CHAR fields of fixed (maximum) length are converted
to VARCHAR fields to ensure only the data actually required for the string is stored.

This separation aims to allow constant random access time by putting all fields of
constant size in a block at the beginning. The actual compression techniques used are
rather simple, e.g. integer numbers are compressed by storing the minimum number of
bytes needed to represent the integer as length information, plus the actual bytes as values.

12 CHAPTER 1. INTRODUCTION

Since all length information is packed in one block, it can be packed into bytes without
unused gaps, i.e. at most 7 bits are wasted per block. Applying the TPC-D benchmark
to a database using this compression approach was quite successful with the size of the
compressed database reduced to 64% and the total query time on the compressed database
reduced to 62%, both compared to the uncompressed database. However, the time for
bulkloading the compressed database went up to 146%.

A more advanced compression method based on Huffman coding is suggested in [17]
and implemented in the IMS DBMS as a segment store/retrieve filter. A segment in IMS
is a concatenation of tuple values of various types, typically considerably shorter than
a database page. Because the access granularity of the filter is on segment level, the
decompression algorithm can only use (statistical) data stored in the compressed segment
and due to the size of the segments this means only very little compression meta data
can be stored. Furthermore, the exact boundaries of the tuple values are not known to
the filter, although they would aid the handling of compression considerably. The solution
suggested in [17] was to use a fixed set of contexts, each with its own set of Huffman
codes optimal for the context, and switching the context adaptively whenever a symbol is
encountered that is improbable in the current context but probable in another. Thus, in
a context for alphabetic symbols, a number is relatively improbable, so after encountering
a number the context would be switched to one for numbers. The Huffman codes for the
various contexts are generated once for a given database by gathering statistical information
about its contents. That is probably the biggest shortcoming of this approach because it
works only on (at least statistically) static databases, as changing the Huffman codes to
compensate changes in the distribution requires recompressing the entire database. When
applied to entire, existing databases, the approach worked quite well, however: the authors
compressed a database consisting of student records to 58% with only 17% CPU overhead
due to compression.

The above publications share little common ground with this thesis because of the
considerable differences between text and array data. Of course basic techniques like
variable length or dictionary coding are used in some parts of the compression engine
described in this thesis as well, as in most sophisticated compression algorithms, but the
model layer differs completely. There is a large body of work using similar model layers
in image compression, however, which was used as a design template for parts of the
compression engine. The related literature on image compression is too numerous to quote
at this point, but a good overview on existing techniques can be found in [47].

1.4 Structure

The thesis starts with an overview on the terminology and data types used as well as the
RasDaMan architecture and its implementation of these data types in chapter 2. This is
followed by the design of the compression engine as an object-oriented two-layer architec-
ture (model- and compression layer) supporting a large range of compression techniques
in chapter 3. This includes wavelets in theory and their applications in data compression,

1.4. STRUCTURE 13

predictors, dynamic parameter system, and closes with an analysis of transfer compression.
This will be followed by an evaluation of the engine on different data types in chapter 4,
and the thesis will close with some comments on the current state of the system and future
work in chapter 5.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Data Model and Terminology

In this chapter, the basic data model of an array DBMS will be introduced, starting with
multidimensional data in general in section 2.1 and continuing with an evaluation of multi-
dimensional arrays as a means to model MDD (Multidimensional Discrete Data) in section
2.2. The chapter will continue with an overview over some typical operations performed
on MDD in section 2.3 and close with the implementation of MDD in RasDaMan.

The following font conventions will be used in this work:

e sans-serif fonts for classes
e fixed-width fonts for code literals
e fixed-width slanted fonts for code variables

e slanted fonts for named MDD

2.1 Multidimensional Data

In the discrete case, multidimensional data is modelled as a list of sample values (cell
values) at specific sample points, i.e. in the nD case tuples of the form (v;,z;1,...,%i,)
where v; are the sample values and x;1,...,%;, are the nD coordinates of the sample
points. Cells are the building blocks of a multidimensional object: each cell has a unique
coordinate, a base type and a value; the union of all cells forms a multidimensional object.
Normally all cells are of the same type, i.e. there is a homogeneous base type for the entire
multidimensional object. Cell coordinates can be stored explicitly, resulting in vector data
which is particularily efficient for sparse data, or implicitly by a specific linearization order
in arrays, an approach which has traditionally been used for dense data like raster images.
In this work I will concentrate on the latter case, which is the format of choice of an
array DBMS. The next section will introduce the concept of multidimensional arrays, their
strengths and weaknesses.

15

16 CHAPTER 2. DATA MODEL AND TERMINOLOGY

2.2 Multidimensional Arrays

Arrays are a fundamental data type in programming languages. Their main advantages
are constant random access time! and that no storage is required for the cell coordinates,
because these are given implicitly by a linearization order, i.e. the cell size is indepen-
dent from the MDD’s dimensionality, properties vector-oriented storage in tuples does not
have. The use of sophisticated index-structures can improve access times of vectored data
considerably compared to the worst case linear scan (e.g. [7]), but the increasing storage
requirements per sample proportional to the number of dimensions is intrinsic to the vec-
tor model. The disadvantage of array modelling is the memory consumption for sparse
data, because storage is required for all points within the array, irrespective of fill level.
Therefore vector modelling gains over array modelling when large portions of the data
space are empty — or in a related case when adequate representation of the data requires
array resolution too high for practical purposes, e.g. when local singularities are sampled
at considerably higher resolution than the surrounding smooth data. It must be noted
that vector storage requires considerable storage space for coordinates alone, however: a
typical 2D greyscale image (8 bits per pixel) stored that way would require five bytes per
sample, assuming 16 bit types for the coordinates, in contrast to array storage which re-
quires just one byte per sample, i.e. vector storage only begins to consume less space than
array storage when at least four out of five cells are empty. High dimensionality is also
to the disadvantage of vector modelling because the number of bytes per sample increases
with dimensionality in that case, whereas it is constant in arrays. For example, a 3D to-
mogram with cell values one byte in length would already require seven bytes per sample,
again assuming 16 bit types for coordinate representation. This is a considerable argument
against vector representation in many application areas.

When using arrays, coordinates are implicitly given by a bijective linearization function
0, : A" — 7L, which translates multidimensional coordinates * = (xy,...,x,) within an
array over the nD interval w = [ly,u1] X -+ X [ln, up], liyu; € Z, 1 < i < n into (1D)
offsets. With the extents of the dimensions d; = u; —[; +1,d; € IN,1 < i < n, the standard
linearization technique used in high-level languages like C++ (“Scanline”) is given by

n

i=1 j=i+1
= ((((.’L’l —ll) 'd2—|—.f132—l2) d3+—|—.27n_1 _ln—l) dn+$n_ln)

and the matching inverse function o' : Z — Z" which translates offsets back into multi-
dimensional coordinates is

o'(z) =

1Or more precisely access time is constant for all positions within an array, but it doesn’t stay constant
if the dimensionality of the array is changed but typically increases linearily with the number of dimensions.
If a contiguous area of the MDD is iterated over, this can be optimized to be constant for the inner cells,
thereby improving performance considerably; for random access, this is not possible.

2.2. MULTIDIMENSIONAL ARRAYS 17

[1d; I d;
2 Jj=i+1

Other linearization functions are possible and in some cases advantageous because they
might better preserve proximity among cells; any space-filling curve is a candidate for a
linearization function, e.g. the Hilbert curve. The above example is attractive because of
its simplicity, however.

Another point in favour of array modelling is that it allows determining neighbouring
cells much easier than in vector representation due to constant random access time in
array modelling. Efficiently finding neighbouring cells is important for many mathematical
operators like gradients as well as for extracting local correlations, which is an important
issue in compression. Furthermore, there are ways to overcome these array shortcomings:

Sparsity: use compression to eliminate the empty space. In effect, a vector representation
is equivalent to an offset-compression technique storing only those values that differ
from a default value. Like a vector representation, this approach has the disadvantage
of losing constant random access time, but unlike the vector approach, the storage
requirements per cell are still constant in the number of dimensions?.

Resolution: rather than using the same resolution throughout the array, one can su-
perimpose arrays of higher resolution in areas of interest only and apply the same
technique recursively to achieve a multiresolution representation which has logarith-
mic? random access time. A multiresolution representation like this is an integral
part of some advanced compression techniques like wavelets, as a matter of fact.

None of these techniques preserve the aspect of constant random access time, therefore
care must be taken when they’re applied. Neither affects the storage requirements of a cell
relative to the dimensionality as in the vector case, however. In many application areas,
array modelling — with the possible addition of compression or multiresolution represen-
tations where feasible — has become considerably more popular than vector modelling, for
example raster images, tomograms, many kinds of simulation and observation data.

The terminology used in the remainder of this thesis is founded on the concept of
Multidimensional Discrete Data, or MDD for short [1]. MDD are based on array modelling
of multidimensional data and provide a generic template type for this kind of data. The
MDD template type must be instantiated with cell type information and a spatial extent
descriptor to obtain a concrete data type. I will use the following definitions:

Cell: an MDD consists of cells situated at the nodes of a regular grid bounded by the
MDD'’s spatial domain; each cell has a base type.

2The reason for this is that in array modelling a linearization function always exists and therefore
instead of the actual coordinates the linearization offsets can be used instead, which are independent of
the dimensionality.

3Logarithmic in the number of hierarchical resolution levels.

18 CHAPTER 2. DATA MODEL AND TERMINOLOGY

Base Type: a base type describes the structure of each cell within a given MDD object.
A base type can be an atomic type like int or float or a structured type which may
contain atomic types or other structured types. With the conventional atomic types
defined by ODMG [9], this leads to the following definition of a base type:

base_type = struct_type | atomic_type
atomic_type = boolean | char | octet | short | ushort | long |
ulong | float | double [name]
struct_type = struct [name] { base_type [, base_type] * }
name = any variable name

The name is optional when describing the structure of the base type, but can be used
to bind arbitrary (sub)types to identifiers; in the absence of names, numbers have to
be used for identification. An example for a structured base type is the standard RGB
type struct { char red, char green, char blue } used for colour images.

Because the important array property of constant random access time of arbitrary
cells should be preserved, base types (and therefore cells) must have constant length,
within an MDD?, as this is required in order to calculate a cell’s address as o, (z) times
the size of a cell; if the cell size was variable, this would no longer be possible and
an iteration over the preceding cells would be required, thereby losing the excellent
random access properties of arrays. Because according to the above definition a base
type consists of a set of elements in atomic_type, all of which have constant length
by definition, any base type generated from this grammar also has constant length
(constant meaning independent from the value).

Channel: array data belonging to the same atomic type forms a channel, for example an
MDD over the RGB base type consists of three channels for the three atomic types
contained in the base type.

Spatial Domain: (sdom) an nD interval describing the spatial extent of an array. I will
use the notation sdom,, = [ly : us,...,l, : u,] to describe an nD interval with lower
bounds [; and upper bounds w;, l;,u; € Z,l; < wu;. There is also a special form
without fixed boundaries for MDD type definitions only, using the asterisk * for I; or
u; (or both) which stands for any value; an MDD can’t be instantiated with a spatial
domain containing *, but an MDD type can be defined that way (see the examples
below). A spatial domain differs from the carthesian product [ly, uy] X -+ X [l uy]
in that it supports only integer coordinates, which allows applying a linearization
function like equation (2.1), whereas the carthesian product describes a continuous
region in IR™ where this is not generally possible®.

Using these definitions, any multidimensional array satisfying the constraint of constant
base type size can be constructed from the MDD template by instantiating it with a

4i.e. the length must be independent from the value, which is not true for e.g. strings.
®the value of o(z) would no longer be an integer, which means it can’t be used to calculate a cell address
in memory.

2.3. OPERATIONS ON MULTIDIMENSIONAL ARRAYS 19

(concrete) spatial domain and a base type. MDD types describe classes of MDD and may
be parameterized with arbitrary spatial domains, like in some of the following examples:
My char any 1D array of characters
M[O:255,0:255},struct {char r, char g, char b} 2D RGB images with 256 X256 pixels
Mscx soxwn) shore a0y 3D array over the base type short
Ms:x0:15,0:31,0:63),fl0at a0y 4D array over a floating point base type with
arbitrary extent in the first dimension and fixed
extent in the other 3

2.3 Operations on Multidimensional Arrays

Having established the MDD concept, we now look at typical operations we want to execute
on this data type. These can be classified into the following major categories:

1. spatial transformations: changing the spatial extent of an MDD, typically redu-
cing it;

2. base type projections: restricting an MDD over a structured base type to the
values belonging to a subset of the base type, typically one atomic type;

3. cell operations: performing calculations on the data.

These operations represent orthogonal concepts which can be combined in arbitrary
fashion, such as executing a data operation on an MDD to which a spatial transformation
and a base type projection were applied. We will now describe these operations in more
depth (for a full description of the algebra see [3]):

2.3.1 Spatial Transformations

Spatial transformations change the size of an MDD or its dimensionality (or both). For
the remainder of the section we will assume that the MDD has the spatial domain
[l :up, ..., 1, s u,). A spatial transformation is described by one restriction r; per di-
mension; this restriction can have the following forms:

section: a; : b;, denoting a lower boundary a; and an upper boundary b; for dimension
7, which means that in dimension ¢ all data with coordinates between a; and b;
(both inclusive) should be used and all values outside of that interval are discarded.
Obviously, the necessary restrictions on the values are [; < a; < b; < w; (where
a; = b; is a borderline case which should normally be replaced by a projection). For
convenience we will also use the asterisk x as an alias for [; when a; = * and as an
alias for u; when b; = %, i.e. x : * would be the entire range.

projection: p;, which is the value to project to in dimension 7. A projection collapses the
interval to a point and thereby reduces the dimensionality of the MDD by one. The
values at the projection hyperplane x; = p; are used, all the other ones are discarded.
Naturally, the restriction /; < p; < u; must hold.

20 CHAPTER 2. DATA MODEL AND TERMINOLOGY

A projection to p; and a section with a; = b; = p; result in identical data, but the
projection also reduces the dimensionality by one in contrast to the section which leads to
an interval containing only one legal coordinate. Since this representation is redundant,
such a section should normally not be used.

Spatial transformations can be used to perform range queries on MDD via sections,
such as selecting an area of interest within a large MDD, such as the hypothalamus area
within a 3D volume tomogram, or to retrieve orthogonal cuts through the data using
projections, for instance a still frame from a movie (3D spatio-temporal MDD). Sections
and projections can be mixed arbitrarily for different dimensions.

2.3.2 Base Type Projections

Base type projections can be used on MDD over a structured base type to select a subset of
the MDD’s channels and discarding the rest. A typical example of this would be selecting
one spectral channel of a multispectral image (e.g. the green channel of an RGB image).

2.3.3 Cell Operations

Cell operations perform calculations on the actual data (in contrast to the transformations
mentioned in the previous two sections which operate on the data’s schema and map the
data to a subset). Typical examples of such operations range from adding constants to all
cells, over masking two MDD or summing up the cell values, to complex operations like a
Fourier transformation. The basic calculation classes are

induced: these operations simultaneously apply a base operation to all cells of an MDD
[42]. Depending on the cardinality of the operator, there are the following induction

types:
unary induced: MDD — MDD. Examples are ”-” which multiplies all cells by -1,
or not which performs the boolean not-operation on all cells;

binary induced: MDD x scalar — MDD or MDD x MDD — MDD. Examples for
the first case would be adding or multiplying by a constant to brighten/darken
an image. The second case could be e.g. subtracting or multiplying two MDD:
subtracting an MDD from a shifted version of itself can be used to obtain a
discrete approximation of the gradient field in a specific direction, whereas mul-
tiplying two MDD can be used for masking, for instance when a complex region
of interest is stored as a binary mask in a separate MDD;

condense: MDD — scalar, e.g. summing all cells.

2.4. IMPLEMENTATION OF MDD IN RASDAMAN 21

2.4 Implementation of MDD in RasDaMan

In this section I will introduce the basic RasDaMan architecture, show how MDD are
handled and what kinds of operations are supported on them. I will then explain where a
multidimensional compression engine fits into this architecture and what modules it affects.

RasDaMan is an array DBMS which uses a conventional base DBMS (BDBMS) as
storage and transaction manager; an overview of the architecture is depicted in figure 2.1.
RasDaMan interacts with the BDBMS via a specific interface layer at the lowest level
of its internal module hierarchy which encapsulates all communications with the BDBMS
in question; this means that RasDaMan can be ported to a different BDBMS by simply
exchanging this interface layer without having to change higher level modules. At the time
of writing this thesis, there existed drivers for three different BDBMSs, the object-oriented
O, system as well as the relational DBMSs Oracle and DB2.

MDD M are stored in the BDBMS as BLOBs (Binary Large Objects), but usually not
in their entirety but decomposed into non-overlapping smaller units called tiles, where each
tile ¢; is a small MDD itself with the same base type and number of dimensions as the entire
MDD and Ut; = M. A tile contains that portion of the MDD’s data, which intersects the

tile’s spatial domain sdom(t;), linearized into row major format as used in C/C++ which
is also the implementation language, i.e. those cells whose last coordinate differs by 1 lie
closest together in the linearized representation. For structured base types, the data for
each cell is stored interleaved, so for the RGB type the red, green and blue components of
cell ¢; are stored as three consecutive bytes, the next three bytes are the colours for cell
¢i+1 and so forth.

Tiles are normally several database pages large, typically between 32kB and 512kB,
depending on the size of the entire MDD and its regions of interest. They represent the
finest access granularity, i.e. whenever an arbitrary cell within a tile is accessed, the entire
tile has to be loaded, which is an important factor when designing the compression engine.
The tiling model was chosen in order to allow efficiently handling arbitrary query boxes
independently of the size of the entire MDD: if the MDD was stored in one BLOB, large
and mostly discontinuous parts of the BLOB would have to be accessed in order to retrieve
cells within a query box [24]; by using tiles, data is better localized, plus only those tiles
that lie fully or in part within the query box have to be accessed by the server in the first
place, which makes the system scale with the size of the query box rather than the size of
the MDD.

Very small tiles are stored inside the tile index itself (inlined tiles) rather than in
external BLOBs. The main motivation for this is to avoid wasting storage space in case
the tile size is noticeably below the size of a database page, because then the space wasted
could actually exceed the tile size. While the size of uncompressed tiles can easily be
configured to be several database pages large, this is no longer possible with compression,
where for instance a tile with identical cells everywhere can usually be compressed to
just a few bytes. Therefore it is important to be able to store very small tiles efficiently,
in particular if the DBMS is capable of compression, and inlining them is one possible

22 CHAPTER 2. DATA MODEL AND TERMINOLOGY

solution.

The next higher level of RasDaMan contains modules for the tile index, tile-based
operation execution and the catalog for base type management. The tile index encompasses
several multidimensional indexing techniques including a simple directory index as well as
an nD R+ tree; its purpose is efficiently finding tiles contained in given spatial domains
when doing range queries on MDD. In depth information about the tile index is provided
in [24]. The catalog manager implements the dynamic base type system, including its
persistent storage and materialization, as well as operations on various combinations of
base types, which is used by the query execution engine. Query operations are executed
on tile level in the tile manager module.

The top level module in the RasDaMan server is the query engine consisting of parser,
optimizer and executor. The query engine implements the query language RasQL [3, 42],
an extension of SQLI2 [29], which adds the MDD paradigm to SQL. The query parser
module builds a query tree from the textual query. The optimizer then uses this tree
structure to find an efficient execution plan using various algebraic transformations; this
plan is then fed into the executor which processes the query using the lower level modules
of the architecture, on tile level if possible, to keep down memory requirements. A detailed

5

©

&

:

o4

:

& .

= Index Tilemgr Catalog

% Storage compression
Base DBMS Interface

< :

|_

% Conventional Base DBMS

o]

(=]

o)

Figure 2.1: The basic RasDaMan architecture

2.4. IMPLEMENTATION OF MDD IN RASDAMAN 23

overview of the query engine can be found in [42].

RasDaMan server and client applications interact through network-transparent com-
munication layers which translate primitive operations like sending or receiving scalars,
MDD or MDD collections into RPC calls, thereby allowing client and server to reside on
arbitrary computers as long as they have a network connection. In addition to the client
communication layer, the C++ client library RasLib contains classes encapsulating entities
like base types, spatial domains, MDD or queries in order to facilitate the development of
client applications.

24

CHAPTER 2. DATA MODEL AND TERMINOLOGY

Chapter 3

Compression Engine Architecture

In this section, I will present the architecture of the MDD compression engine as imple-
mented in the RasDaMan array DBMS [20]. One application of the compression engine
already mentioned in section 1.1 is transfer compression, which requires some compression
functionality in client programs as well. In order to improve source code maintainability
and grant maximum flexibility in transfer compression, the engine was implemented as a
module shared by client and server. The only difference is how data exchange formats are
handled on client and server, which will be discussed in more detail below.

A major design criterion was modularity and extensibility, because as mentioned in the
introduction, there exists an abundance of specialized compression methods to choose from
whose efficiency depends on the type of data they’re applied to. Most importantly, there is
no universally ideal compression method, therefore several alternatives should be provided,
covering a wide range of data types. In addition, the engine should be easy to extend as
requirements change over time or better compression methods become available. These
requirements can be modelled very well in an object oriented fashion with an abstract
compression base class defining the interface and an extensive class hierarchy derived from
it implementing the concrete compression techniques.

The compression granularity is another important design decision. Because compres-
sion usually makes random data access impossible, the granularity must be chosen fine
enough to avoid (de)compressing large amounts of data when only a small fraction of it
is actually accessed. There are some simple compression techniques where this problem is
reduced, e.g. changing a cell value in offset-compressed data doesn’t require recompressing
all data following the changed cell, but these techniques usually don’t achieve very good
compression, so the engine must cater for the limitations of more complex methods like
dictionary or variable length compression techniques as well. An extreme example would
be the access of a single cell in a volume tomogram which was compressed in one block: for
all access types, all data from the start up to the cell in question! has to be decompressed,
whereas write-operations additionally require compressing all data from that cell to the
last one in the encoding order used. Clearly, this kind of access granularity is unacceptable.

'Relative to the chosen encoding order.

25

26 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Since RasDaMan is already tile-based — for the same reason of reducing access gran-
ularity — it is natural to make tiles the compression granularity as well. That means that

e any access to data within a tile requires (de)compressing at most the entire tile. If a
compression method allows decompressing subsets of the tile it may be less;

e the compression type is defined on tile level rather than MDD level (or even higher).
This means that the compression type can differ between tiles belonging to the same
MDD, like uncompressed tiles, tiles with lightweight compression and others with
high performance compression. This flexibility is attractive with respect to known
access patterns and regions of interest, where a strategy could be to compress data
that is rarely used and keep frequently accessed regions uncompressed to achieve a
good ratio of average access time vs. total storage requirements.

Most modern raster data compression technology, like JPEG [60] or the upcoming
JPEG2000 standard [51], have a two-layer architecture where the functionality is divided
in the following way over the two layers:

Model layer: the top layer transforms the data according to a data model into a format
more suitable for compression, such as the discrete cosine transformation (DCT)
in JPEG and/or channel decorrelation such as the RGB — YUV conversion often
found in image compression?. In case of lossy compression, quantization is usually
attributed to the model layer as well. The top layer does not perform any actual
compression, in many cases the data is actually expanded® (but typically sparsely
populated);

Compression layer: the bottom layer implements traditional symbol-stream-oriented
compression methods such as variable length techniques like Huffmann coding and
the newer arithmetic coding (AC) [63], or pattern-oriented techniques like run-length
encoding (RLFE) and dictionary techniques like the popular LZ77 [64] used in gzip
and pkzip, or even combinations of these like RLE followed by AC. Actual data
compression is done in this layer only. Quantization could also be done on this level,
but usually is performed at the top layer because additional information such as
"acceptable” loss levels etc. is no longer available in the bottom layer.

There are considerable advantages to this approach: formally there is the clean sepa-
ration of different tasks (transformation vs. compression) into two distinct modules which
allows exchanging components of either layer without affecting the other, such as using a
different compression layer without having to change any part of the transformation layer

2Essentially this transformation converts image colours into luminance (Y: grey level) and chrominance
(U,V: difference from grey level) components. This system is often used in compression because the human
eye is better at distinguishing differences in brightness than differences in colour, so the chrominance
components can be encoded in fewer bits than luminance without affecting perceived image quality.

3In JPEG, for example, the DCT coefficients need more precision than the input data, therefore the
transformed data is larger than the original data.

3.1. THE COMPRESSION LAYER 27

or being able to reuse all components in the compression layer for different transformation
techniques. Due to the similarities of image data and many common types of MDD, it
is therefore natural to also use this tried and tested two-layer architecture in an MDD
compression engine. This leads to two separate class hierarchies linstream described in
section 3.1 for the compression layer and tilecompression described in section 3.2 for the
transformation layer.

An important issue in compression is offering the user the possibility to configure the
compression methods with various parameters. Quoting two popular examples, ZLib allows
specifying a compression level as a time vs. size reduction tradeoff parameter, whereas
JPEG offers parameters for the image quality vs. size reduction and a smoothing factor.
While the parameters in these examples are integers, this is not necessarily true for other
compression techniques where floating point or string parameters can prove useful, neither
is there a fixed set of parameters nor is it sensible to burden any compression type with
the parameters of all compression types taken together. This problem will be addressed in
more detail with the dynamic parameter system in section 3.6.

3.1 The Compression Layer

The compression layer represents traditional compression methods based on the concept
of a (1D) symbol stream. Most importantly, no MDD properties are known at this level,
therefore preprocessing done in the transformation layer must exploit MDD properties and
dispatch data to the compression layer in a format that allows efficient compression, such as
transforming coefficients channel-by-channel rather than interleaving channel coefficients.
Because all data is interpreted as a 1D (or linear) symbol stream in this layer, it is rep-
resented by an abstract base class linstream which acts as a filter with linear streams of
symbols as input and output. Figure 3.1 shows an outline of this class hierarchy. Due
to this generality, the various compression classes in this layer may also be used for other
tasks than MDD compression, such as compressing server log files etc.

All classes derive from a common ancestor class linstream, but immediately split into
separate branches for compression and decompression streams where the actual interfaces
are defined. The reason for this is that normally compression and decompression work very
differently internally. For instance when compressing, the size of the compressed data is
usually not known in advance, so the compression stream must be able to efficiently handle
compressed data of almost arbitrary size, whereas when decompressing the sizes of both the
compressed and the uncompressed data are typically known. This leads to considerable
differences in the interface, not to mention the internal implementation. Nevertheless,
both compression and decompression streams provide mostly the same interface methods,
although their signature differs. Both branches provide a static create() method for
conveniently constructing an object of class lincompstream or lindecompstream from a format
enumerator. The lincodecstream class is separated from this hierarchy and serves as a
convenient way to get matching compression/decompression streams. The basic interface
methods for the compression and decompression classes are the following:

28 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

lincodecstream

+get _conp_streamn()
+get _deconp_stream()

conpr ess deconpr ess

linstream
#paranms: parsepar ans

lincompstream lindecompstream
+begi n() +begi n()
tput() +get ()
+end() +end()
+create() +create()
+set _streamn() +set _strean()
[[
| nocompstream | | nodecompstream |
| rlecompstream | rledecompstream
| zlibcompstream | zlibdecompstream
| arithcompstream | arithdecompstream

Figure 3.1: The linstream class hierarchy
This diagram shows a skeleton of the bottom (= compression) layer of the MDD compres-
sion engine in UML notation. Attributes are ignored and only a subset of the available
methods is displayed to keep the diagram readable.

lincompstream:

begin(typeSize, dataSize): prepare the compression stream for symbols of
length typeSize and a total size of approximately dataSize. Typically, this
method allocates internal buffers and prepares the compression environment.
Neither parameter is strictly necessary but can be used by compression streams
to improve their performance. For example dataSize can be used to deter-

mine the size of internal buffers and typeSize is used by RLE compression (see
below).

put(data, size): compress size bytes starting at data and store the result inter-
nally.

end(data, size): stop compression, flush all data and free resources; return the
compressed data and its size.

3.1. THE COMPRESSION LAYER 29

set_stream(stream): activates the streaming interface (see below) and redirects the
compressed output data into another lincompstream object.

lindecompstream:

begin(typeSize, data, dataSize): prepare the decompression stream for sym-
bols of length typeSize from compressed data starting at data and size
dataSize. The typeSize parameter is not strictly necessary, but if anything
but the default value is used it must be consistent over compression and decom-
pression.

get(data, size): read size bytes of symbols from the compressed data and store
them at data.

end (): stop decompression and free resources.

set_stream(stream): activates the streaming interface and redirects the stream’s
input data from another lindecompstream object.

All linear streams support two modes of operation, a static one where the compressed
data is directly stored to and read from memory and a streaming one where data is stored
to and read from another linear stream. The streaming mode allows efficiently concatena-
ting linear streams to arbitrary depth and thereby forming banks of compression streams,
whereas static mode is intended for the last stream in a bank or a standalone stream for
actual storage. In this context, efficiency means that no stream in a bank has to finish
before the next in line can start operation, i.e. there is no need to explicitly store inter-
mediate data in its entirety: small internal buffers suffice, saving considerable amounts of
memory for larger stream banks. While it is usually not advantageous to concatenate two
streams of the same type?, certain combinations of different streams can cooperate quite
well.

3.1.1 The Compression Streams

The compression layer consists of four stream types, a trivial one that just stores its input
data plus three compression streams representing the major compression techniques in use
today with different weights on compression quality vs. computational overhead. I will
now give an overview of these streams including typical application areas; a class diagram
of all compression streams can be seen in figure 3.1.

None:
No compression, the data is not (de)compressed but merely copied. This stream
type is present for symmetry and to facilitate debugging higher level compression
techniques which use compression streams for storage.

4A given compression method usually can’t reduce the entropy of its own output data any further.

30 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

RLE:

Run-Length Encoding compression is one of the oldest and simplest compression tech-
niques there are. Nonetheless, it is still in common use today because it achieves good
results on sparse data and requires very little computational power. RLE algorithms
compress sequences of symbols s; € S, 1 <i < n over an alphabet A = {ay,...,a,}
with the same value (— runs) by decomposing the symbols into a sequence of k
tuples r; = (Ij,5;,) € L x A, 1 < j <k < n where s;; are those symbol values
s;i @ Siy1 # 8; and [; € L are the number of repeats (L is a set of length counts).
Obviously this algorithm is fast because it only has to pass over the data once, i.e.
O(n); it also works well for sparse data where there are many consecutive symbols
with identical values. A big problem of primitive RLE algorithms is worst case data
expansion, however, because if there are no runs, £ = n and a primitive encoding of
the tuples would make the size of the compressed data n - |l| larger than the original
data where || is the data size of a length count. In the typical case, the sizes of a
symbol and a length count are both bytes, leading to a worst case data expansion to
twice the original size.

There are more efficient ways to encode the tuples, however. One is to define an
escape symbol s., encoding tuples with [; > 2 as triples (s, [}, s;;) where s, signifies
that the following symbols represent a run tuple. The escape symbol itself is encoded
by the tuple (s, 1), i.e. the value of the run symbol is redundant because no real run
has length 1; all real runs require tuples with all three entries. The main disadvantage
of this technique apart from less efficient encoding of run-tuples is that usually there
is no distinct escape symbol which doesn’t appear as normal symbol too, i.e. the
(normal) symbol must be encoded as (s, 1). Depending on the probability p(s.) of
the escape symbol in the input stream, this leads to a data expansion by p(s.)-n-|l|.
For a fixed escape symbol this leads again to a worst case data expansion of n-|l| which
is unacceptable, although much less likely than the worst case when using primitive
encoding. An adaptive algorithm, on the other hand, can use the least frequent
symbol as escape symbol, i.e. p(s.) < %, and thereby limit the data expansion to
2l|. For the typical case of bytes with 256 symbols as alphabet, this means a
worst case data expansion by only ﬁth. Unfortunately an adaptive algorithm needs
two passes over the data which adds complexity and doesn’t fit very well with a
streaming interface, therefore this kind of encoding is not suitable for a compression
layer stream.

A very efficient way to encode run length data is the PackBits algorithm described
in [53]. This introduces the concept of a literal run as a sequence of tuples (1,s;)
(corresponding to sequences of different symbols in the input stream) which are
encoded as a sequence l_j, Si;s Sij+1, - - - Where Z_J is the number of symbols in the literal
run. This approach requires dividing the set of length counts L into two disjunct
sets L; and L, for literal and run counts, typically with |L;| = |L,.|. This can be
implemented by interpreting length counts [; € L as signed numbers, where a positive
sign identifies a literal run followed by the [; literal symbols and a negative sign

3.1.

THE COMPRESSION LAYER 31

identifies a normal run (i.e. repeating symbols) followed by the symbol that is to be
repeated |[;| times. This approach has the disadvantage that due to the distinction
into positive and negative values, the maximum length of a run is limited to half the
value range of L; on the other hand, the worst case data expansion is Qn% without
needing more than one pass over the data, i.e. %th when using bytes for lengths and
symbols. Furthermore, there is no additional overhead when encoding normal runs
like when using an escape symbol, i.e. a run can be encoded in two symbols rather

than 3. Therefore PackBits was chosen as the RLE format for the linear stream.

As a further optimization, the algorithm was extended to operate on input symbols
larger than one byte to allow compressing data of larger atomic types more efficiently.
Currently supported sizes are 1,24 and 8, covering the sizes of all popular atomic
types. Without this optimization, the input stream <1,2,2,2,2> over a 16 bit base
type would be interpreted as a sequence of bytes <0,1,0,2,0,2,0,2,0,2>° which
obviously doesn’t compress at all in RLE. Length counts are always encoded in 8
bits, however, because larger base types usually don’t mean longer runs.

ZLib:

This stream corresponds to the well-known standard compression library ZLib [67].
ZLib compression is based on the LZ77 adaptive dictionary compression technique
[64] combined with Huffman coding of symbols and dictionary references, which is far
superior to RLE in terms of achievable compression rates, but also of considerably
higher complexity. ZLib compression and equivalent techniques have been in common
use for many years in the form of the popular gzip and PKZip compression programs
and its continued relevance is stressed by the relatively new PNG image standard
[41] where ZLib is used for data compression.

Dictionary techniques replace sequences of symbols with references into a dictionary,
thereby achieving compression as long as the reference takes up less storage than the
actual symbol sequence (this is a criterion for the minimum length of sequences in the
dictionary). The performance of this class of compression obviously depends heavily
on how well the dictionary suits the data to compress; if for instance a dictionary
of english words was used to compress a german text, much fewer sequences could
be replaced by references into the dictionary than if a german dictionary had been
used. One could set up a large number of different static dictionaries and choose the
optimum one for compression, but there are several problems with this approach:

e finding the optimum dictionary for a stream of symbols requires compressing the
data with all dictionaries and comparing the compressed data sizes. Considering
the large amount of dictionaries needed for the vast number of different data
types, this is not feasible;

50n a little endian computer; for a big endian computer, exchange the values at even and odd positions.

The consequences for RLE compression are the same for either endianness.

32 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

e finding a ”good” dictionary requires heuristics, such as "use an english dictionary
to compress an english text”. While this will work reasonably well in special
cases like text, this is not true for arbitrary binary data;

e in most cases, self-contained data is preferred, which means the dictionary
should be included in the compressed data, but explicitly storing the dictio-
nary along with the compressed data can increase the data size considerably.

Therefore most dictionary techniques in common use today are adaptive, i.e. they
build the dictionary from the actual data rather than using a static dictionary. The
most popular approaches are the ones developed by Lempel and Ziv, LZ77 [64] and
LZ78 [65]. LZ77 uses a window W of width w over the most recently processed
symbols as a dictionary, which allows making a dictionary reference by using an
offset from the current position and a length (see figure 3.2). The disadvantage of this
approach is that sequences are removed from the dictionary based on their position,
not their frequency. This was addressed in LZ78 [65] where an explicit dictionary is
built from new sequences found in the data. Despite the removal of the theoretically
undesirable properties of LZ77, LZ78 implementations often perform worse than LZ77
ones®; as can be seen by comparing the compression tools compress (LZ78) and gzip
(LZ77), therefore LZ77 was chosen implicitly via ZLib as the dictionary technique

used in the lincodec class hierarchy.

Window
...d@e. ..aabcaeeb. ..b@b abcaedabeaacbhdd...
< W _,| Current position

Figure 3.2: LZ77 dictionary compression
This figure shows the dictionary window in LZ77 compression and its role when compressing
data at the current position. The algorithm searches in the dictionary window ending at
the current position for the longest match with the sequence starting at the current position.
Matches in the dictionary are underlined, the best (longest) match is underlined twice.

Regarding complexity, dictionary techniques are very expensive during compression
and cheap during decompression. For LZ77, compressing data at a position p within
the stream with at least w preceding and w following symbols requires comparing the
sequence starting at position p with the sequences at positions p—7, 1 < 7 < w; note
that the sequence can be longer than j symbols, i.e. the referenced sequence may
end after the current position. In order to lower the complexity of the compression
algorithm, the maximum length of a reference is usually limited to m symbols (258

6The reason for this is that due to the higher complexity of building an explicit dictionary, its size is
usually smaller (12 bit) than the LZ77 window (15 bit).

3.1. THE COMPRESSION LAYER 33

in ZLib). This leads to a worst case complexity of w - m comparisons for finding the
optimum dictionary entry at each position p, although it is usually considerably lower
because the comparison fails early on for most j. Considering the typical window size
of 32kB in ZLib, the complexity is obviously much higher than for RLE, although
still linear in the number of input symbols. The complexity can often be reduced
dramatically by using hashtables”, but as usual with hashing there is no guaranteed
performance improvement and the worst case is still theoretically possible.

Arithmetic:
The principles of arithmetic coding date back to the 1960ies, but it wasn’t before
the end of the 1980ies that implementations of arithmetic coding started appearing,
one of the first of which was presented in [63]. The basic idea is to represent a
sequence of input symbols S = {s1,...,s,} over an alphabet A = {a4,...,a,} with

probabilities p1,...,p, by a real number € [0,1[. Let v; = Y p;, then obviously
j=1

v9=0< v <--- <wv, =1 and the unit interval can be represented as the union
of the non-overlapping intervals I; = [v;_1, %[, 1 < ¢ < m. Now a symbol a; can
be represented by any number within [;. If we now rescale interval I; to the unit
interval, we can apply the same partitioning scheme recursively to encode the next
symbol, right unto the end of the stream of input symbols. With each new symbol
encoded, the interval representing this symbol becomes smaller and the number of
bits required to encode it with sufficient precision to allow exactly reconstructing the
input sequence increases, without a fixed limit; this was one of the main reasons why
arithmetic coding was not implemented for a long time and its complexity limited
its practical application until recently.

The reason why probabilities are used as basis of the unit interval decomposition
when any sequence with 0 < p; < 1 and Y. p;, = 1 could be used is to minimize
the number of bits required for frequent symbols: if p; is high, the interval I; is
big and relatively few bits are required to represent any value within it, whereas for
an infrequent symbol the opposite applies. This allows modelling the probability of
a symbol much more precisely than in e.g. Huffman coding which assigns a fixed
integral number of bits to each symbol and therefore can only represent probabilities
27 precisely.

The main problem when implementing arithmetic coding is modelling the unlimited
precision required for the interval boundaries. Unlimited precision would be very
expensive because it’s not supported by computer hardware and therefore would
have to be emulated in software (and the complexity for encoding a symbol would
increase with the length of the input sequence). Fortunately, this isn’t necessary
because limited precision is sufficient as long as encoder and decoder stay in sync;

“For each position within the dictionary window a hashcode is generated from the n;, symbols starting
at this position, where n; is a small number, typically three. These hashcodes are then used as keys to
look up the positions of the sequences with the same hashcode as the one starting at the current position.

34

CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

10 T 0.75T 0.75 =T 0.67125T
a4 a4 a4 a4

0.75F 0.6375-T 0.721875 -1 0.6684375-1
a3 a3 a3 a3

03 =+ 0.435-1 0.67125 =1~ 0.663375-1
a2 a2 a2 a2

02 T 0.397T 0.66 T 0.66225T
al al al al

0.0 == 0.3= 0.6375 == 0.66 ==

a3 a4 a2

Figure 3.3: Arithmetic coding

This figure shows how arithmetic coding of a symbol sequence azasas works, given an al-
phabet A containing four symbols ay, ..., as with probabilites p1 = 0.2,ps = 0.1, p3 = 0.45
and py = 0.25. The first symbol is az, corresponding to the interval [0.3,0.75[, which is
then partitioned according to the probabilities like the unit interval. With each new symbol,
the interval representing the sequence encoded so far is getting smaller. After three steps,
any number in the interval [0.66,0.67125[can be used to represent the input sequence.

this allows using fixpoint arithmetic and flushing out the most significant bits at
suitable points during encoding, rescaling the interval bounds and operating with a
limited number of less significant bits. With a fixpoint representation for the interval
bounds [, h in [0,1] there are three situations where the current interval can be
rescaled to compensate for its contraction, which are explained here for the encoder:

1. 1 > 0.5: in this case the most significant bit of both [and h is 1. Because the

interval after encoding a new symbol is always fully contained in the interval
before the encoding, the most significant bit can’t change in this situation: it
may be shifted out, resulting in a rescaling of the current interval by 2 (I :=
2(1—0.5), h:==2(h—0.5) + 1);

. h < 0.5: in this case the most significant bit of both [and h is 0 and can be

shifted out for the same reasons as in the case of [> 0.5 (I :=2l, h :=2h + 1);

. 0.25 <1 < h < 0.75: in this case the interval is rescaled to [:= 2(I — 0.25),

h :=2(h —0.25) 4+ 1 and the encoder memorizes how many consecutive times k
transformation (3) has been performed in succession. As soon as (1) or (2) are
executed, k bits opposite to the one emitted by one of these are emitted first
and k is reset to 0.

3.2. THE TRANSFORMATION LAYER 35

Note that these rescaling operations ensure that at all times h — [> 0.5, thereby
making sure that there is always a sufficient number of bits of precision to compensate
for interval contraction, let alone contraction to a point.

The main advantages of arithmetic coding compared to Huffman coding [27] are bet-
ter modelling of probabilities into number of bits used and more efficient techniques
for adaptive coding and alphabets with a very large number of symbols. Concern-
ing the last point, in Huffman coding the full tree representation for all symbols
must be materialized during encoding/decoding, making it unfeasible for very large
alphabets, as for instance a Huffman code tree for 32 bit symbols would have to
contain codes for 232 symbols, which would take up several gigabytes of memory; in
arithmetic coding, even such a vast number of input symbols could still be modelled
efficiently provided the probability function has an analytic representation®. These
advantages have made arithmetic coding the de facto standard in modern entropy
coding techniques and has also been adapted in JPEG2000 [51]. For more details on
arithmetic coding see [63, 47].

3.2 The Transformation Layer

Whereas the compression streams in section 3.1 perform actual compression on already
linearized data, the transformation layer’s task is to preprocess the data in a way to make
the subsequent compression more efficient. The transformation layer itself doesn’t perform
data compression, in some cases it may actually expand the data; e.g. for general wavelets,
data is transformed into floating point coefficients, which are later quantized into integers
which may be larger than the original data type. Usually this transformed data is sparse,
however, and will therefore compress better even though it may be larger than the original
data in its uncompressed form. The transformation layer is MDD-aware and can therefore
exploit MDD properties such as the semantics of (structured) base types and correlations
of neighbouring cells.

The transformation layer is modelled as an extensive class hierarchy based in the ab-
stract root class tilecompression; the name was chosen because the compression engine is
tile-based and the transformation layer operates directly on tiles. Each tile references an
object of the tilecompression hierarchy it uses for transparent compression and decompres-
sion of the tile data. The interface provided by the tilecompression class mainly consists
of compress() and decompress() methods, apart from means of identification. The im-
mediate children of the tilecompression class add predictors, which will be treated in more
detail in section 3.5. Tiles normally use the interface methods transparently, i.e. when tile
data is accessed by a higher level module (see section 2.4) and the tile was compressed,
it is decompressed; conversely, when a tile is stored or transferred, it is compressed with
the compression class it references. This allowed easy integration of tile compression into
the DBMS architecture, but leaves out some optimization potential, as some compression

8Otherwise probability tables are needed, whose size would also increase with the alphabet size.

36 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

methods like RLE allow executing simple induced and aggregation operations (see section
2.3.3) directly on the the compressed data. Since this is only true for very simple compres-
sion algorithms and decompression can’t be avoided when the tile needs to be trimmed,
the advantages of extending the system in this respect are doubtful; OLAP data cubes
would probably profit, however, being sparse and therefore highly compressible even with
simple compression like RLE.

An outline of the entire tilecompression hierarchy can be seen in figure 3.4. The imme-
diate children of the tilecompression base class are tilecompinter which includes interchannel
prediction (correlates cell values across channels) and tilecompred which furthermore adds
intrachannel prediction (correlating neighbouring cell values within one channel). The sim-
pler classes will be explained in section 3.2.1, whereas wavelets are covered separately in
section 3.3; predictors will be presented in section 3.5.

3.2.1 The Transformation Classes

There are four major transformation categories in the tilecompression hierarchy, differing
in the MDD properties used and the weights of complexity vs. achievable compression. I
will give a short overview of these classes in the remainder of this section; the wavelet class
is considerably more complex than the other ones, therefore wavelets will be introduced in
more depth in section 3.3.

tilecompnone: No compression.

This class is optimized for fast handling of uncompressed data to avoid copy oper-
ations which are unneccessary when no (de)compression takes place; as far as mere
functionality goes it could also have been implemented in e.g. tilecompstream de-
scribed below. As a special case there is also the derived class tilecompother which
handles all tile data formats which don’t fall into any of the other categories of the
transformation layer; the only difference to its parent class is that it stores the data
format descriptor (which is otherwise given implicitly by the kind of the tilecompres-
sion object). This system is normally used for data exchange formats (DEFSs) like
PNG [41] or HDF [26] which have functionality similar to MDD compression but are
usually not as generic, e.g. PNG can only be applied to 2D MDD with a small subset
of base types. tilecompother is the only class of the compression engine that dif-
fers on client and server: whereas on the server, the compress() and decompress()
methods are mapped to the DEF’s encode () and decode () methods to unify MDD
compression and DEF's in a common interface, they’re dummies on the client to avoid
burdening client applications with the various external libraries required for the DEF
convertors.

tilecompstream: No transformation.
This class represents the simplest form of tile compression which does not perform

9n RasDaMan there are DEF convertors for BMP, JPEG, PNG, TIFF, HDF and VFF, some of which
require external conversion libraries.

3.2. THE TRANSFORMATION LAYER

tilecompression

T

tilecompinter
#predinter: predictor
+conpress()
+deconpress()
#do_conpress()
#do_deconpress()

#par ans: par separ ans -
+conpress() Tile
+deconpress() < has #sdom spatial donmain
+create() #t ype: base type

tilecompredict

#predintra: predictor

+conpress()
+deconpress()

tilecompnone

tilecompstream tilesepstream

waveletcomp

#do_conpress()
#do_deconpr ess()

#do_conpress() #do_conpress()
#do_deconpr ess() #do_deconpress()

#get _conpressor #get _conpressor
#get _deconpressor () #get _deconpressor ()

e

#biter:

band iterator

#l codec
#do_conpress()
#do_deconpress()
#init_codecs()
#band_encode()

|l i near codec

twaveletcomp

#band_encode()
decode()

tilecompother #band_decode()
; - " #met d
#imt: data format | fjlecomprle | [tileseprle | #rot awe it (e%)
tilecompzlib tilesepzlib
waveguant
+encode_bands()
+decode_bands() let |
+meta_read() < has gwaveletcomp
tneta_wite() #quant : wavequant
Zﬁ #band_encode() K
#band_decode() #band_|
#met a_read() #met a_read()
bandquant Ztreequant ot awr 1t e() ot awr 1 tel)
#qc: quantctrl #ztree: zerotree

+encode_bands()
+decode_bands()
+nmet a_read()
+meta wite()

+encode_bands()
+decode_bands()
+met a_r ead()
+meta wite()

orthowavelet

daub4

ghaar

haar

-filter:

doubl e[]

#i ni t _codecs()

#i nit _codecs()

#i nit _codecs()

#set _filter()
#i ni t _codecs()

L

orthofactory

+ocreate(fnt:data format)

Figure 3.4: The tilecompression class hierarchy
This figure shows an outline of the class hierarchy of the top (= transformation) layer in
UML notation with tilecompression as the root class. Only a small subset of the available
methods and member variables is shown for readability.

37

38

CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

any transformation nor uses any MDD properties but merely feeds the linearized tile
data into an object of the compression layer; because the data belonging to struc-
tured base types is stored interleaved in RasDaMan (see section 2.4), data belonging
to different channels is also mixed. Since all methods in the compression layer are
accessible through a common interface, all functionality but the creation of suit-
able (de)compression streams can be provided in tilecompstream scope. The streams
are obtained by derived classes through a get_compressor() / get_decompressor ()
interface which is implemented in the child classes tilecomprle and tilecompzlib. Arith-
metic coding is not used in this context, because it usually only performs better than
ZLib on special, decorrelated alphabets like the zerotree one (see section 3.4.3).

tilesepstream: Base type transformation.

This class represents a more sophisticated type of tile compression which exploits
the semantics of structured base types and compresses the values of each channel
separately. For instance an RGB image would be processed by first compressing the
values belonging to the red channel, next the green and finally the blue channel. The
output of the individual passes is then concatenated to form the final compressed
tile data. Apart from the separation of base type values, this class works like tile-
compstream and also uses the same interface to obtain (de)compression streams. In
case the tile has an atomic base type, tilecompstream and tilesepstream are obviously
equivalent. For structured base types, tilesepstream is usually more efficient because
data belonging to the same channel is typically correlated stronger than data at the
same position across channels, but there are exceptions; for instance the trivial case
of a greyscale image stored as an RGB image where at all positions the values of all
channels are identical. This situation is also addressed by predictors which will be
discussed in more detail in section 3.5.

waveletcomp: Wavelet compression.

This is the most advanced compression method which exploits both the semantics of
structured base types as well as spatial correlations. Wavelets are base functions with
certain properties like compact or near compact support, which are used to analyse
the input data at various resolutions. Wavelet transformations are related to the well
known Fourier transformation'’, but because wavelets have compact support, they
allow localized analysis without needing an additional window function like the 8 x 8
blocks in JPEG. The wavelet coefficients resulting from this base transformation are
usually very sparse or of negligible amplitude and can be decimated considerably
with little impact on the quality of the reconstructed signal. This property has made
wavelet transformations the current state-of-the-art in image compression and be-
cause MDD share many properties with images which are attractive for compression,
wavelets were also chosen in this MDD compression engine, in particular for lossy
compression.

10The discrete cosine transformation used in JPEG is also strongly related to the Fourier transformation.

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 39

3.3 Wavelets and Multiresolution Analysis

In recent years, wavelets have received a huge amount of attention, especially in the fields of
data compression [52, 55, 45, 28, 14, 56], computer graphics [23] and numerical mathemat-
ics [32, 25, 66], but have also found application in data mining problems [59]. Wavelets are
base functions with special properties which we will describe in more depth in section 3.3.2.
What’s commonly referred to as wavelet transformation is actually a multiresolution anal-
ysis with wavelets, i.e. representing a signal as a superposition of weighted base functions
at different scales and translations. The coefficients resulting from such a base transforma-
tion can be used to reconstruct the original signal during the multiresolution synthesis by
calculating the sum of these coefficients multiplied with the base function they correspond
to. The idea of the multiresolution analysis is to start analysing the signal at a certain
coarse scale, resulting in a rough approximation of the signal, then to apply the analysis
at the next finer resolution to the difference between the original signal and its coarse ap-
proximation and recursively continuing up to a specific finest resolution. This corresponds
to applying a low-pass filter to obtain the coarse representation and a high-pass filter to
obtain the difference, then recursively doing the same for the difference signal. A major
advantage of using wavelets rather than arbitrary base functions for this procedure is the
existence of fast analysis/synthesis algorithms which operate on a neighbouring resolution
level rather than the signal resolution. The fast analysis algorithm, for instance, starts
with the signal c; at the finest resolution with n samples, calculates average and detail
signals ¢;_; and d;_; from this, where the number of samples in ¢;_; plus the number of
samples in d;_; is n, and recursively operates on c;_; with fewer (typically §) samples, to
calculate cj_5 and dj_o etc.

Provided the signal is smooth, the difference between the approximations at consecutive
resolution levels will be small, allowing for more efficient compression than the original
signal. In many cases, the majority of the wavelet coefficients will be either zero or close
enough to it to allow setting them to zero without a noticeable degradation of the signal
reconstructed by the multiresolution synthesis. The goal of using wavelet transformations
in the compression context is therefore to find an equivalent (lossless) or similar (lossy)
representation of the data which compresses better than the original data.

3.3.1 Wavelet Examples

Before addressing some mathematical background of wavelets in section 3.3.2, we will have
a look at two examples which illustrate how a multiresolution analysis with wavelets works
in principle. In both examples, Haar wavelet transformations will be applied recursively
over several hierarchical levels. As will be shown in section 3.3.2, applying a discrete wavelet
transformation corresponds to folding the data with matching low-pass and high-pass fil-
ters, which for Haar wavelets have the filter coefficients (%, %) (low-pass) and (%, —%)
(high-pass). Haar wavelets (see also figure 3.9) were chosen due to their simplicity: the
filter is short (which is important for the numerical example) and easy to understand be-

cause, apart from the normalization, the low-pass filter calculates the arithmetic average

40 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

and the high-pass filter the difference from this average. Other wavelet filters are more
complex and can be highly irregular, such as the orthogonal Daubechies series, some of
which are depicted in figure 3.12 on page 54.

3.3.1.1 Numerical Example, 1D

The first example is a short 1D sequence of numbers. The original data was chosen to be
the following sequence of 16 numbers which is relatively smooth!! in accordance with the
data model wavelets are targetted at:

10 16 13 9 o -5 -2 4 0 3 8 1210 15 20 30

In the first pass, pairs of consecutive values starting at even positions are folded with the
filter coefficients; the response of the low-pass filter (¢; = %(’021‘ + v9;41)) is then stored in

the first half and the response of the high-pass filter (d; = %(Ugi — U2i4+1)) in the second
half of the data interval.

c3 (averages level 3) d3 (detail level 3)
26 22 -5 2 3 20 25 50 4 5 -6 -3 —4 =5 10

—6
V2OV2 V2 V2 V2 V2 VR VR VR Ve V2 VR V2 VR Ve VR

Now the multiresolution aspect comes into play as the same transformation is applied
recursively to the averages that were just calculated (c3); the detail coefficients on this
level remain unchanged for the remainder of the multiresolution analysis:

c2 d2 d3

48 =3 23 75 | 4 -6 4 5 =6 =3 -4 =5 =10
2 2 2 | V2 V2 V2 V2 V2 V2 V2 V2

=7
2 2 2 2

Again, the algorithm is applied recursively to the coarsest averages; this can be continued
twice more before we arrive at one global average value:

cl d1 d2 d3

45 98 | 51 -52|4 -7 17 -25| 6 4 5 -6 -3 -4 -5 —10
22 23| 23 2V3 | 2 2 2 2 |2 V2 V3 VR VR V2 V2 R
c0 [do d1 d2 d3

143 | 53| 51 52| 4 -7 17 -25| 6 4 5 -6 -3 -4 -5 —10
4| T4 |22 22 2 2 2 |2 V2 V3 VR VR V2 V2 R

At this point, the multiresolution analysis of the original data is complete and no coarser
scale levels are possible. Note that the general trend is that the average coefficients are
larger than the detail coefficients and that the coefficients’ magnitude increases with the
depth of the hierarchical recursion, so the maximum absolute value is ~ 7.07107 in d3,
12.5 in d2, ~ 18.38478 in d1, 13.25 in d0 (the only exception of the trend) and 35.75 in cO.
This is typical for smooth data and the reason why wavelet transformations can improve
the compression rate of this kind of data considerably.

1

!i.e. the maximum difference between consecutive numbers (10) is small compared to the data’s numeric
range (35).

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 41

3.3.1.2 Image Coding Example, 2D

In the second example, shown in figures 3.5 — 3.7, Haar wavelet transformations were ap-
plied to the well-known Lena image [33] in successive horizontal and vertical passes over
two resolution levels. This is the standard multidimensional extension of wavelet trans-
formations taken in image compression and will be motivated (and generalized) in the
implementation-biased section 3.3.3.

Detail coefficients are visualized such that zero corresponds to white and the larger the
absolute values the darker the pixels in the detail bands; therefore a mostly white detail
band means small detail coefficients. Note how sharp edges in the original image result
in dark detail coefficients (large absolute values), whereas areas with uniform colour or
smooth colour gradients result in detail coefficients close to zero. Because the detail bands
in this example are dominated by small values, their contrast is low, therefore this example
closes with an image where the detail bands were rescaled to use the full greyscale range in
figure 3.8, which illustrates how wavelet compression achieves its substantial compression
rates by filtering out this noise.

3.3.2 Mathematical Background

In this section, some mathematical background on wavelets will be given, mostly based on
[15]. Wavelet mathematics is a highly complex field, however, so only an overview of the
most important aspects will be given here; the interested reader is referred to [15, 18] for
a profound introduction to wavelets.

Wavelet transformation is related to the well known Fourier transformation which has
been a standard signal analysis procedure for many years. The Fourier transformation of
a function f

(FNNE): m / e f (@) (3.1)

performs a base transformation of the function using the complex exponential functions
be(z) = € = cos(z€) + isin(z€) as base functions, thereby transforming the signal into
its frequency spectrum where (Ff)(£) is the Fourier coefficient for frequency . Thus a
function is expressed as a superposition of complex sine and cosine functions at various
frequencies. This is the reason why the Fourier transformation is often used in signal pro-
cessing to analyse the frequency spectrum of a signal. The inverse Fourier transformation

() " (FF)(€) g (3.2)

-l

reconstructs the original signal from its Fourier coefficients. An important observation is
that sharp edges in the input signal result in Fourier coefficients for high frequencies whereas
a smooth input signal results in a concentration at low frequencies and zero or near zero

42 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Figure 3.5: Wavelet transformation example: original image
This is the original Lena image with a spatial extent 512 x 512 in 256 grey levels (i.e. 8
bits per pizel).

coefficients for high frequencies. Because the base functions b¢(z) have infinite support'?,
the Fourier transformation is not localized, i.e. changing any value of the input signal will
change all Fourier coefficients. This property is often not desirable and one way to deal

with it is folding f(z) with a window function g(x) before the Fourier transformation, i.e.

T e~ f(x)g(xr — &) do to achieve localization to the support of g(x — &). For example

in JPEG the window function isolates 8 x 8 pixels before applying the DCT (another
relative of the Fourier transformation). However, since ¢ is usually a constant function,
this approach doesn’t allow analysing the input signal both in areas of rapid change and
in areas of little change efficiently.

Wavelet transformations are similar to the Fourier transformation in that they perform
a base transformation of the signal, but there is a large number of wavelet functions which
ideally have compact support or are almost zero outside of a finite interval. Wavelet trans-

12The support of a function f(x) is the interval [zo,z1] : f(z) defined and # 0 for zop < x < 21

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 43

Figure 3.6: Wavelet transformation example: finest level

To the left, the image from figure 3.5 is shown after applying a wavelet transformation in
horizontal direction, this partitioned the image into two bands, with the average coefficients
in the left half and the detail coefficients in the right half. The image to the right resulted
from applying vertical wavelet transformations to the left image; this operation divides
each of the two bands in the left image into two further bands, resulting in a total of four
bands: the total average to the top left, horizontal detail and vertical average to the top
right, horizontal average and vertical detail to the bottom left and total detail to the bottom
right. Now let the letters ¢ and d represent average and detail coefficients along a given
direction; using the convention that the horizontal coefficient type comes before the vertical
one and appending the number of the resolution level the band belongs to (starting from
3 and decreasing with coarseness), we can label these bands as cc3, cd3, dec3 and dd3
respectively. See also figure 3.13 on page 55.

formations are based on a mother wavelet 1(t) (the corresponding ”mother” function of
the Fourier transformation is the complex exponential function e~*®), scaled and translated
versions of which are used in the actual transformation. Three elementary properties the
mother wavelet must have are

[e.9]

/w(t) dt = 0 (zero-mean) (3.3)
/ Y()Y(t)dt = 1 (normalization) (3.4)

/ W dt Cy < oo (reversability), (3.5)

i

44 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Figure 3.7: Wavelet transformation example: next coarser level
The image to the left resulted from applying a horizontal wavelet transformation to the total
averages of the next finer level, i.e. the upper left band (cc3) of the right image in figure
3.0; the other bands of this image (cd3, dc3, dd3) are not transformed. As in the previous
case, the image to the right displays the result of the corresponding vertical transformation,
leading to seven bands cc2, cd2, dc2, dd2 which replace cc3, and the bands of the next
finer level that were untransformed at this level: ¢d3, dc3 and dd3.

where equation (3.5) places restrictions on the Fourier transformation of ¢, which is im-
portant regarding the existence of an inverse wavelet transformation [15, 18].

Because of the (near) compact support of the mother wavelet, it is obvious that the
mother wavelet alone can’t be used to analyse any given input signal, because those parts
of the signal that fall outside the support would be ignored. Therefore, translated versions
of the mother wavelet must be used: ¥(t) = 1(t — b), b € IR. Adaption to areas of rapid
change is done by using the mother wavelet at various resolution levels (scales), which
leads to the set of base functions

i) =l o (20) avem, 36)

which is a times as wide as the mother wavelet and shifted by 3 relative to it. Using these

scaled and translated versions of the mother wavelet, the continuous wavelet transformation
has the form

Whab) = [foui a (3.7)

which is used to calculate the wavelet coefficients (W f)(a, b) for all resolutions a and trans-
lations b; note that equation (3.7) is of a form very similar to the Fourier transformation

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 45

Figure 3.8: Wavelet transformation example: enhanced detail bands

This image shows the right image of figure 3.7 where the values in the detail bands were
rescaled to cover the full greyscale range. Note that this has a particularily large effect on
the dd3 band at the bottom right which was almost entirely white without the rescaling (i.e.
small detail coefficients) and now shows a substantial amount of random noise. Because
these coefficients are small, they have little influence on the image quality and can be
ignored, and because (truly) random data doesn’t compress at all, this modification seriously
mmproves the compression rate; this is how wavelet compression techniques achieve their
superior performance.

in equation (3.1). An inverse transformation for a given mother wavelet ¢ exists if the
mother wavelet satisfies the conditions in equations (3.3)-(3.5) and has the form

fla) = Oiw /] (Wf)(a,b)wif) da db. (3.9)

In order to process discrete signals stored in a computer, the discrete wavelet trans-
formation is needed which essentially requires replacing the integrals with sums, resulting
in a countable number of wavelet coefficients (W f)(a,b), a,b € Z. However, a problem
with this representation of the wavelet transform is that it turns a 1D signal f(z) into a
2D signal (Wf)(a,b) and thereby expands the data rather than deflate it. But as we will
see, by exploiting dependencies between the wavelet coefficients of neighbouring resolution
levels in a multiresolution analysis, the number of wavelet coefficients can be restricted to
the number of samples in the input signal.

So far, arbitrary values were possible for the scale and translation parameters. Typically
only integer powers of 2 are used, i.e. (a,b) = (2%, 2%), resulting in the base functions
Vjx(t) = 2/%(27t — k), j, k € Z, an example of which can be seen in figure 3.9.

46 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

A HlO 4 SlO
P T
H 1
5 10 05 0
0 q t > 0 + 1 >
i
H
H
d 14
A A
e, B REOnEELE LR LR T EEt LR TR R TR R TR R P LR P TR Ty
1
H.o H 21 Szo i 82,1
1 1 i
1
i
1
1
1
i
4
5 10 5 0
0 ! f > 0 t] »>
1 -1
A A
2deccess memmeey memmeen e, 2
H .o H,. H32. Ha, S3.o S;, S;, Sis
.
H
H
1 ! 1
H
H
H ! H ! : : : H
45 . H . 1,0 H ds H 10
0 + + > 0 + + >
1 -1
2 T L CETEE TR PEPT R -2

Figure 3.9: Multiresolution Haar wavelets
This figure shows some Haar wavelets H; ; at different scales (i) and translations (j) and
the corresponding scaling functions S; ;, as used in a multiresolution analysis. The scale
factor between successive levels is %, i.e. the wavelets at the next higher scale level i + 1
are half as wide and have \/2 as large an amplitude (to satisfy the normalization equation

(3.4)) as the ones at the previous level 1.

We will now examine the dependencies of wavelet coefficients at different scale levels
in the L? space of square-integrable functions!®, leading to the multiresolution wavelet
analysis. The 9, (t) with constant j (i.e. constant scale) and k € Z span a subspace W; of

13This is a necessary restriction for base transformations like Fourier- or wavelet transformations.

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 47

L2 i.e. there are functions f; € L? which can be represented exactly as linear combinations
of the base functions in W;: f; € W; < 3 (si) : fi(z) = X spvjr(x). The subspaces W
k=—o00

converge towards L? and can be used to approximate any function f € L? with arbitrary
precision, i.e. for each ¢ > 0 there exists a j such that || f — f;|| < e; furthermore, the finer
the scale level j, the smaller the approximation error gets, so naturally if || f — f;|| <e =
If = frll <e 3" =3

For the remainder of this section we will assume orthogonal mother wavelets (i.e.
o

_Ofo Y k() 1m(t) At = 610k m; thisis only 1 if both j = land k = m, i.e. _f V(). (t) dt:

all wavelets generated out of an orthogonal mother wavelet are orthogonal to each other
and normalized to 1), which means that the subspaces W, are mutually orthogonal:

j—1
W; L Wy Vj # k. Now consider another sequence of subspaces V; = U W, where
k._

the resolution also increases with j. The important consequences of this definition are

Vi = V;UW; (3.9)

Vi C Vin (3.10)
lim V; = L2 (3.11)
Jj—00

In analogy to the W; which are spanned by the ;, k € Z generated out of a mother
wavelet 1), let’s now assume the V; are spanned by ¢;, k € Z generated out of a scaling
function ¢ in exactly the same way as the v, , i.e. ¢;1(t) = 2//2¢(27t — k). Details on the
existence of such a scaling function are beyond the scope of this work, but can be found
in the standard literature on wavelet mathematics [15, 18]. Provided matching ¢ and ¢
exist, they can be used to perform a multiresolution analysis.

In a multiresolution analysis, a signal is decomposed into average and detail coefficients
for various scale levels, using correlations between the coefficients of successive scale levels
to calculate the wavelet coefficients of the next coarser level 7 — 1 during analysis and
those of the next finer level j+ 1 during synthesis from the coefficients at level j; finest and
coarsests resolution in this operation are application-dependent and will be addressed at
a later point in this section. Average coefficients are those belonging to the ¢, generated
out of the scaling function and detail coefficients are those belonging to the v;; generated
out of the mother wavelet; the term ”wavelet coefficients” is used as a shorter alias for both
average and detail coefficients. The remainder of this section covers the decomposition of
a signal into wavelet coefficients during analysis and the reconstruction of the signal from
its wavelet coefficients. We will first look at how the ¢;; and 9, at different scale levels
are correlated and use the result to correlate the wavelet coefficients themselves across
different scale levels.

Because of equation (3.9), all ¢;_1 ; and v;_ are contained in V; and can therefore be
expressed as linear combinations of the ¢, ; which span Vj, i.e. there exist unique sequences
(p;) and (g;) such that

48 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

¢j-10(z) = % pidji(r) = 27‘/2‘§ (27w — 1)

T T | (3.12)
Yi10(z) = ‘:g Gidji(z) = 29/ ':z qd(2x — i)

The sequences (p;) and (g;) correspond to the analysis filter coefficients and their actual
relation with the wavelet filter coefficients listed in the standard literature [18] will be
explained towards the end of this section. We now extend equation (3.12) to also include
translations # 0 by expressing ¢;_1 x(x) as ¢;_1,0(z’) as follows:

G- p(x) =207 V2¢(27 g — k) =: 207 D2(277 1) = ¢y 9(a),

and analogously for ;_qx(x). That means 297!z —k =2"'2’ must hold, or
' =x — 277k, We can then calculate ¢;_1 (x) and ;1 () using equations (3.12) and
replacing = with 2/, which gives us (using the index transformation i’ = ¢+ 2k in the fourth
step)

¢ji1k(r) = ¢j10(2")
= 22 3" pio(2(z —2'Tk) — i)

= 22 _f: pip(2x — 2k — i)

= 91/ i pi—oed(2x — ')

- i:ioopi_zmj,xx) (3.13)
k@) = Yyao@) == S Gndia(o) (3.14)

1=—00

Thus equations (3.13) and (3.14) allow expressing scaling functions and wavelets of the
next coarser level by using the scaling functions of the nearest finer level. The sequences
(p;) and (g;) are constant across all scale levels and unique for each pair (¢,v) of scaling
function and mother wavelet. Due to the (near) compact support of wavelets and scaling
functions, the sequences (p;) and (¢;) are zero everywhere outside of a small window around
1=0.

For the other direction (synthesis) we use the fact that V; = V;_1 UW;_4, i.e. any ¢,
can be expressed as a linear combination of ¢;_1; and ¢;_1; using unique sequences (a;)

and (b;):

o

dio(x) = Y (a2idj_1:(x) + bythj_14(x))

1=—00

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 49

o

202 S (agip(27 1w — i) + baith (27w — 1)) (3.15)
In analogy to the sequences (p;) and (g;), the sequences (a;) and (b;) correspond to the
synthesis filter coefficients and their relation with the wavelet coefficients will be explained
at the same point later in this section. The reason for using the index 2i rather than ¢ is
to avoid non-integer indices in the following calculations. Non-integer indices of sequences
are not a problem as such, but they’re unusual and therefore are rescaled to integers. We
can extend equation (3.15) to include translations again by using ¢; ,(z) =: ¢;(2’), which
leads to 2/ = x — 279k. Replacing z in equation (3.15) with this 2’ and using the index
mapping i’ = g + ¢ in the fourth step we obtain

</5j,k(36’) = <Z5j,0(36/)

oi-1)/2 i (azd(@ 1@ — 277k) — i) + both (27L& — 277k) — i)
= 0o §° (a%qﬁ(w—lx R A z’))
212 f; (as—s9(@ " = i)+ ba_ (2 — 7))
- i@@ (a1 051.4(2) + bos_4thy14(x)) (3.16)

Therefore, equation (3.16) allows expressing the scaling function at the next finer level
by using the scaling functions and wavelets of the nearest coarser level. Just like the
sequences (p;) and (g;), the sequences (a;) and (b;) are constant across all scale levels,
unique for each pair (¢,1) and zero everywhere outside a small window around i = 0.

We will now apply the correlations between the 1;; and ¢;; we just found to correlate
wavelet coefficients of a function f(z) = jllrgo fi(z), f; € V; across different scale levels; any

square-integrable function can be expressed this way provided j is large enough. Because
of equation (3.9), any function f;4; € Vj4; can be written as the sum of two functions
fi € V; and g; € W; for all j. Because f; € V; and g; € W;, there exist unique sequences
(¢)), (d?) such that

flo) = 3 dei (317)
5@) = 3 i), (318)

where ¢ are the average coefficients and d? are the detail coefficients, both at scale level

J. Equation (3.17) is also true for f; 1, however; we therefore get the following equations
by substituting ¢, according to equation (3.16):

50 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

fi(x) +gi(x) = fin()
Z ji(z) + Z dipja(r) = Y d o)

== 1=—00 l=—00
= > dT Y (aniagyi(e) + by i)
l=—0c0 i=—00
- Z (¢J:1($) Z c‘lg'+1a2ifl+wj,i($) Z C’lﬂ_lbgil) .
i=—00 l=—00 l=—00

(3.19)

Because ¢;;(z) and 1;,(x) are orthogonal base functions, this equation can only be true
if all their coefficients are equal, therefore we get the following equations for calculating
the average and detail coefficients during analysis:

C{ = Z C’ZHG%—I (3.20)
l=—00

& = > by (3.21)
l=—00

We can obtain the inverse operations by starting from the same decomposition of f;11(z)
but substituting ¢;,(z) and ;,(z) according to equations (3.13) and (3.14):

fivi(x) = fi(x) +g;(z)

S d M giale) = Y dou@)+ > div(x)
1=—00 l=—o00 l=—00
= > (Cf Y picudin(z) +d > qiﬂ%ﬂn’(@)
l=—00 i=—00 1=—00
= Z Gjr1i() Z (Cljpi—Ql“f’d{Qi—Ql)- (3.22)
1=—00 l=—00

Because the ¢;;(x) are base functions, this equation can again only hold if all their
coefficients are equal, leading to the synthesis equation

C_g-i—l _ Z (Cljpi—Ql + d{%—Ql) . (323)

l=—00

It is usually more convenient to write this equation as two equations for even and odd
1, since different p. and ¢ are used in these cases:

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS ol

&= Y (C{p2¢—21+dg%—2l> (3.24)
l=—c0

i = Y (C{p2i72l+1‘|’d{qm72l+1)- (3.25)
l=—o00

Summarizing the results so far, equations (3.20) and (3.21) allow us to decompose a
sequence (¢;) (= a discrete signal) into sequences of average and detail coefficients. Provided
the sequence is non-trivial for a compact interval of indices only, and ignoring border effects,
the number of average or detail coefficients is half the number of elements in the original
sequence; this is a direct consequence of the (near) compact support of wavelet functions
and the fact that the support of scaling functions and wavelets doubles with each coarser
level. Finally, equation (3.23) provides the inverse operation to reconstruct a signal from
its average and detail coefficients. Therefore these three equations allow performing the
decomposition of a signal into multiresolution wavelet coefficients and back.

Provided we have the average coefficients at a finest level J, we can calculate average
and detail coefficients at the next coarser level J — 1, then recursively decompose the
average coefficients at level J — 1 into average and detail coefficients at level J — 2 and
so on until we reach a coarsest level Jy; Jy is typically the level that contains only one
average coefficient (since the number of average coefficients halves for each coarser level)
or a finer level if a full decomposition is undesirable, e.g. for reasons of numerical stability
(an issue that will play an important role in section 3.4). We store the average coefficients
at the coarsest level only, but the detail coefficients at all scale levels. All other average
coefficients are redundant since they can be calculated from the next coarser average and
detail coefficients using equation (3.23). Because the number of coefficients halves for each

coarser level, the number of coefficients that have to be processed in a multiresolution
J=Jo

analysis is Z 5 < Z 3 = 2n, where n is the number of average coefficients at the finest

level J. The multlresolutlon analysis is shown schematically in figure 3.10, where in each

column equations (3.20) and (3.21) are applied.

J-1 J—2 Jo+1 Jo
d, dpy=" - dy, d
A T s

Figure 3.10: Decomposing a signal into multiresolution wavelet coefficients

When the signal has to be reconstructed from its multiresolution wavelet coefficients
during synthesis, this is done by starting with average and detail coefficients at the coarsest
level Jy and calculating the average coefficients for the next finer level Jy+1 using equation
(3.23), then using the detail coefficients at level Jy + 1 to calculate the average coefficients

52 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

at level Jy + 2 and so on until we’'ve reached the finest level J again where the original
signal is reconstructed. Multiresolution synthesis is shown schematically in figure 3.11,
where in each column equation (3.23) is applied.

o ap
N\ N\ N\ N\
R A

Figure 3.11: Reassembling a signal from its multiresolution wavelet coefficients

In case of a discrete input signal4, the finest level is given naturally by the resolution of
the input signal and the average coefficients at this level are identical to the signal values
at the sample points.

The actual values of the four sequences (a;), (b;), (p;) and (¢;) used in the multiresolution
analysis and synthesis are still unspecified so far. For orthogonal wavelets, ¢ and i form a
quadrature mirror filter (QMF) with an even number of filter coefficients h;, 0 < i < 2N.
A QMF is a pair of low-pass and high-pass filters where the high-pass filter consists of the
filter coefficients of the low-pass filter in inverse order and with alternating signs. All filter
coefficients for orthogonal wavelets are normalized in the following way:

2N—-1 2N—-1

S hi =2, S or2=1. (3.26)
=0 1=0

Many filter coefficients have been published in wavelet literature [18, 47] and are usually
given for the scaling function rather than the mother wavelet. The mapping of these filter
coefficients to the sequences (a;), (b;), (p;) and (g;) is closely linked to the algorithms
used to calculate the filter coefficients, which are not covered in this work. For orthogonal
wavelets, the analysis sequences (a;) and (b;) are typically mapped to the wavelet filter
coefficients like this:

a_; = hl

A 0<i<2N —1; 3.27
boi = (=1)"- han—i } == ()

for all other i, a_; and b_; are 0. The mapping of the synthesis sequences (p;) and (g;) is
less standardized due to the filter offset, but a typical mapping is the following for a filter
offset of 1:

poi = h(gN_iZ-_4) mod 2N —3<i<2N —4, (3.28)

14 Typically equidistant, but this is not strictly necessary for a multiresolution analysis; equidistant input
signals allow the most efficient implementation, however.

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 53

Let’s look at a 4-tap filter (N = 2) as an example. According to equations (3.20),
(3.21) and (3.27) we get the following analysis equations (in matrix-vector notation for
more clarity):

A\ he hi hy by i1
(dg'l)_(hg —hy Iy —h0> Civo
C%H—B

The synthesis equations are then obtained by equations (3.24), (3.25) and (3.28) as
-

A Y _(he h ho hs d]
C%iJrl \hs —ho i —h Ci
J

The filter offset in this case is 1, because the average and detail coefficients used in
synthesis start at ¢ — 1. Other offsets are possible, depending on the type of wavelet used.

1
1
1
1
1

-1

&

3.3.3 Wavelet Implementation Aspects

In the previous section, we covered some theoretical aspects of wavelet transformations,
leading to the discrete wavelet transform as a QMF filter. Now we will concentrate on
implementational issues of wavelet transformations in a multidimensional compression en-
gine.

The discrete wavelet transformation introduced in the previous section is a filter applied
to a 1D signal which we have to extend for the multidimensional case. The most commonly
used approach in image compression is to apply 1D wavelet transformations to the rows
of the image, storing the average coefficients in the first half and the detail coefficients in
the second half of the row, thereby transforming a 2" x 2" image into a 2"~ x 2" image
containing average coefficients and a 2"7! x 2" image containing detail coefficients (see
the left image in figure 3.6 on page 43); then 1D wavelet transformations are applied to
the columns of these two images, resulting in four 2"~! x 2"~! images (bands) containing
all combinations of average (c) and detail (d) coefficients in the two directions (see the
right image in figure 3.6). On the next coarser level, the transformations are applied to
the band containing only average coefficients in both directions. This process is continued
recursively until a coarsest level is reached, where the cc band is left. This has already
been shown in the wavelet example figures 3.5-3.7 and can also be seen schematically in
figure 3.13 on page 55 over three hierarchical levels.

For synthesis, this process is performed in the inverse order, using the synthesis filters:
starting at the coarsest level, the wavelet synthesis is applied to the columns of the four
subimages at the coarsest level (ccl, cdl, dcl and ddl in figure 3.13), thereby creating
two 27! x 2" images containing average and detail coefficients for the horizontal direction,

o4 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

1 1. 1.5
1 1 1
0.5 0.5 0.5
0 0 0
05 1 2 3 0.5 1 2 3 4 05, 2 4 6
P2(t) ¢3(t) Pa(t)
2 2 1.5
1 1 1
0.5
0
0 0
1
1 -0.5
21 0 1 2 -1 0 1 2 R 0 2 4
o(2) V3(t) Yy(2)

Figure 3.12: Daubechies wavelets and scaling functions
This figure shows the scaling functions (top row) and mother wavelets (bottom row) of the
orthogonal Daubechies wavelet family with 2/ vanishing moments (corresponding to 48
filter taps; the filter coefficients can be found in appendiz B.1 on page 153). Figures taken
from [35].

which are then synthesized to one 2™ x 2" image with a horizontal synthesis pass. This
image is then used as the cc region for the next finer level, respectively the final image if
there are no more finer levels.

An alternative approach is using multidimensional wavelet bases rather than separable
ones, but that system is hard to adapt to the generic case; some theoretical considerations
about multidimensional wavelet bases can be found in [18] and a concrete 2D example is in
[56] (Red-Black Wavelet). Separable wavelet bases on the other hand are easy to extend for
additional dimensions, i.e. applying 1D analysis filters along all dimensions during analysis
and 1D synthesis filters along the dimensions in inverse order during synthesis. For D
dimensions, this process partitions the data into 2° bands on each scale level, which are
tagged with identifiers in {c,d}?, for example c---cc for the total average, c---cd for the
averages in the first D — 1 dimensions and detail in the last dimension etc. The degree of
detail of a band is the number of dimensions for which the band holds detail information,
which is the number of d tags appearing in the band’s label; e.g. in the 3D case, band ccc
has degree of detail 0, dcc and cdc have 1 and ddd has 3.

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 25

ccl | cdl
cd?2
dcl | dd1l
cd3
dc2 dd2
dc3 dd3

Figure 3.13: Wavelet transformations in 2D
This figure shows the commonly used approach of wavelet transformations in 2D over three
hierarchical levels, as for instance in image compression. Applying horizontal and vertical
transformations partitions the data on each hierarchical level into four bands representing
all combinations of average and detail coefficients for the two dimensions. At the next
coarser level, the transformations are applied to the cc region thus obtained.

The complexity Cj of this D-dimensional wavelet transformation on a multidimensional
array M with the spatial extent wy, ..., wp at the finest hierarchical level is given as follows:
applying the transformation along dimension ¢ involves folding w; values with the wavelet
filter of length | f|, i.e. w;|f| multiplications/additions for each ”line” parallel to dimension
i through M (e.g. for each row or column in an image). The number of these lines is

i—1 D
determined by the width of M in the other dimensions, i.e. [[w; [[wj, leading to a
j=1 j=i+1

i—1 D D
total of |f|w; [T w; [T w; = |f| I w; multiplications/additions per dimension (which
j=1 7 j=it1 j=1

is independent of i and therefore constant for all dimensions). This results in a total
complexity of

D D D
Co(M) =D 1fI T w; = |/ID] w; (3.29)
=1 j=1 j=1

multiplications/additions on the finest scale level, which is linear in the filter length, the

D
number of dimensions and the number of cells (=] w;). At each coarser level I < 0, the
j=1

D
spatial extent is halved in all dimensions, leading to complexities C;(M) = |f|D T] 2'w;
j=1

and the upper limit of the complexity on all scale levels

56 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

0 0 D D 1
- % 0= 1D 3 T2 =0 Tws 3 55 = 11D 55—
l=—00 l=—00 j=1 j=1 1=0
(3.30)
2D

using the correspondence Z QzD = 55—7- An important result of this total complexity
=0

is that it still scales hnearlly rather than exponentially with the number of dimensions,
since l%lm QDDl = 1, thus making it an efficient transformation technique even in high-
dimensional spaces.

Another important implementational aspect is the treatment of the boundaries during
analysis and synthesis. Because the wavelet filters we have discussed so far have length
2N, there is need for special boundary treatment in signals with odd length (on each scale
level) or for filters with N > 1. The easiest solution for signals with odd length is to ignore
the last sample in the transformation and store it explicitly at the end of the average
values instead, thereby transforming a signal with 2n + 1 samples into n + 1 (= (%D
average- and n (= | #5]) detail coefficients. Appending the untransformed samples to the
averages means that they will still be transformed by subsequent passes in other directions
and on coarser scale levels without introducing singularities by boundary extensions. We
will now examine how the width of the average band changes for this approach as we

progress to coarser levels by looking at the 1D case. Assuming our original 1D data has
k.

length |a°| = 3 2%;, j; € {0,1}, we calculate the number |a'| of average coefficients after
i=0

[coarsening steps

la'| 14t
G 51l |a'| even
‘a ’ —_— ’V 2 -‘ { |al‘f1 |al| Odd (331)
2
in the following way:
} G Ji-1 + Tic1
a'|=> "2 47y, ro=0; 1= {f-‘,lgi<k. (3.32)

i=l
This can be shown by complete induction: the induction start |a°| is obviously correct;
for the induction step |a!| — |a'™!| we get

a 1 k il - b i—l—1 - i+ . i—
|l+1|_{|2|w_k <Zz ’yi+nﬂ: 3 2 ”Jﬂrwlz ﬂ: > 270G

i=l i=l+1 i=l+1

We can also formulate r; in a non-recursive definition. First, we can prove by induction
that all r; are either 0 or 1: for rg it’s true by definition; with j;_; € {0,1} and r;_; € {0,1}
then naturally FH%W € {0,1} too. With the same mechanism we can show that

r1=0%& jo=---= 71 =0: for [= 0 this is again true by definition and r;,; = P%W
is either O if both j; and r; are 0 < jo = --- = ji_1 = j; = 0, or 1 if j; or r; differ from 0,

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 57

ie. d5; #0, 0 <i < [, which proves the assumption. Therefore r; can also be written in
closed form as

r; = E iz(l)ji-‘ , (3.33)

which is 0 if jo = --- = 7,1 = 0 and 1 otherwise for 0 < [< k, just like the recursive
definition. That means we can also express |a'| without recursion as

k L 1 -1 .
'] =" 2" + L Zﬁ} : (3.34)
i=l 1=0

This sequence converges monotonously towards 1, as can best be seen from the original
1
definition in equation (3.31), which states that |a'*1| < MTH, or in other words

"t < d| & <ld'| & [d| > 1.

o[+1
2
Since the multiresolution analysis has to stop for |a!| = 1 at the latest, this is always

true which proves the monotonous convergence of |a!| towards 1.

As for the boundary treatment of longer filters, there are several possible approaches to
simulate the 2(N — 1) missing samples (which would also be alternatives to the handling
of odd-length samples):

1. set the missing samples to zero;

2. repeat the last sample;

3. mirror the final samples (symmetric extension);

4. periodic, i.e. concatenate the first 2(/N — 1) samples.

5. special boundary wavelets with shorter filter length;

The ideal border extension avoids singularities which would result in large detail co-
efficients. Only items 3 and 5 guarantee a certain degree of smoothness in the extended
signal, independent of the original signal. However, alternatives 1-3 have the major disad-
vantage that they require storing the extra boundary coefficients for synthesis. Alternative
5 is quite complicated to do, especially for long wavelet filters, and is rarely implemented.
Periodic extension (4), on the other hand, maintains one wavelet filter throughout the
transformation and doesn’t require storing more coefficients than samples in the original
signal because the boundary coefficients can also be obtained by periodic extension (of
both average and detail coefficients respectively). It is therefore a very frequently used
boundary extension, despite potential singularities at the boundary, and was chosen for
this compression engine as well; alternative boundary treatment is an issue for future work.

58 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Another important question when implementing a generic wavelet engine is what data
types to use for the arithmetic operations (folding with the filter coefficients). Most litera-
ture on wavelet compression concentrates on image or video compression where the arrays
being transformed have the cell type byte, which allows using a conventional 32 bit type
for the arithmetic of some special wavelet types'®, thereby doing the wavelet transforma-
tions in pure integer arithmetic. With the exception of Haar wavelets, it would be much
more complicated (and often impossible) to use integer arithmetic in a generic compres-
sion engine, therefore the double type is used for most of the wavelet types, which has the
highest precision of the available standard types, but represents a bottleneck on systems
with low floating point performance. However, the consistent usage of double arrays for
wavelet coefficients greatly facilitates not only the actual wavelet transformations but also
further processing stages like quantization, which can all be written for one data type, no
matter what the type of the original data was.

3.3.4 The Wavelet Class Hierarchy

We will now have a closer look at the structure of the wavelet classes in the tilecompression
class hierarchy shown in figure 3.4 on page 37. In contrast to the other compression classes,
the waveletcomp hierarchy only uses interchannel prediction, because wavelet transforma-
tions are equivalent to intrachannel prediction themselves, thereby rendering additional
intrachannel prediction superfluous. Predictors will be covered in depth in section 3.5 on
page 89.

The waveletcomp class provides functionality shared by all wavelet classes, i.e.

e separating the channels of MDD over structured base types and presenting these
individually to child classes which perform the actual encoding/decoding algorithms;

e managing the compression streams (including stream concatenations of arbitrary
length) used for the actual compression of the transformed data. The linstream class
hierarchy representing compression streams was described in section 3.1;

e managing the banditerator object which divides the bands into equivalence classes
and determines the order in which the bands are processed. The banditerator class
hierarchy is described in section 3.4.2.1;

e packing the compressed data for all channels and the meta data of all components
of the waveletcomp hierarchy required to correctly interpret the compressed channel
data into one block of binary data during encoding and extracting meta data and
compressed channel data from such a block during decoding.

The child classes of waveletcomp are twaveletcomp for lossless (transform only) wavelet
compression and qwaveletcomp for lossy (quantizing) wavelet compression; note that given

15Haar wavelets and some wavelet filters which can be approximated in integer arithmetic, as e.g. used
in JPEG2000 lossless mode.

3.3. WAVELETS AND MULTIRESOLUTION ANALYSIS 29

sufficiently accurate quantization, qwaveletcomp can also perform lossless compression for
most base types'®.

3.3.4.1 Lossless Wavelets

twaveletcomp currently only supports Haar wavelets. The reason for this is that there
is a simple way to do this transformation in integer arithmetic by normalizing the filter

coefficients differently for analysis and synthesis. The exact Haar coefficients are (%, %),

which are replaced by the coefficients (3, 3) during analysis and (1,1) during synthesis.

In other words, the wavelet coefficients are scaled by % compared to those resulting

from a transformation using the real Haar filter coefficients, but they’re also scaled by

V2 during synthesis and both effects cancel each other out. This representation also

illustrates why Haar wavelets have already been used at times when the wavelet concept

was still unknown, because in this form an average coefficient is calculated as the am’thmflftic
+

average (an archetypical low-pass filter) of two consecutive values (CZ = %(C‘%jl + chih))

and a detail coefficient is the difference of the first value from this average coefficient

(d = %(c;;“ — b)), which is also the negative difference of the second value from the
average coefficient. Note that d;'. is always a signed value, whereas CZ has the same sign as
the original data. With this encoding, the original values can obviously be restored during
synthesis by adding and subtracting the detail coefficient from the average value.

However, there is the problem that the division by 2 can’t be done in integer arithmetic
on one hand, and that without the division the average and detail coefficients can fall
outside the range of the original type. It is still possible to encode average and detail
coefficients to allow lossless reconstruction without having to change the base type. The
proof for that involves some low-level bit manipulation and is given in appendix A for
completeness. The special encoding proposed there for the wavelet coefficients of integer
input values allows using the same number of bits for the wavelet coefficients as for the
input values, which is both more efficient in terms of runtime memory consumption as well
as compression rate; this is not possible for generic wavelets. Finally, the order in which
the bands are quantized in twaveletcomp is determined by a banditerator object, which is
described in section 3.4.2.1.

3.3.4.2 Quantizing Wavelets

The majority of the wavelet classes in the compression engine are quantizing, which usu-
ally implies loss. For most base types, loss is not inevitable provided the quantization is
sufficiently accurate, but in this case data normally doesn’t compress well, if at all (com-
pare with the results in section 4.3). All quantizing wavelet classes are derived from a
common parent class qwaveletcomp, which contains an object of the wavequant class for

16Mostly integer types. If the wavelet transformation itself introduced an irreversible error, no lossless
compression is possible, no matter how good a quantization is used. More on this will follow in section
3.4.

60 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

(de)quantization of wavelet coefficients; more on quantization itself will follow in section
3.4.

In contrast to the twaveletcomp hierarchy, wavelet coefficients in the qwaveletcomp hier-
archy are real numbers (IEEE double precision) irrespective of the base type of the original
data, i.e. the wavelet coefficients form a D-dimensional array of floating point data. This
is necessary because a) generic wavelet filter coefficients are real numbers and therefore
the filter response is too, and b) because optimizations like the ones for Haar wavelets in
section 3.3.4.1 are unfeasible for generic wavelets. The last stage of decoding wavelet coef-
ficients consists of converting such an array of floating point values back into the base type
of the original data. Due to loss, the floating point values are no longer guaranteed to lie
within the range of the original data’s base type (this mostly applies to integer base types)
and must therefore be restricted in range to avoid aliasing errors!”. This effect has a major
impact on the use of predictors and will be addressed in more detail in the corresponding
section 3.5.4. The wavequant class is the abstract root class of a (de)quantization class
hierarchy for D-dimensional wavelet coefficients. It currently contains two child classes,
one for homogeneous band quantization (section 3.4.2) and one for the more efficient (and
more complex) Generalized Zerotree coding (section 3.4.3). Other quantization approaches
such as a generalized SPIHT (Set Partitioning in Hierarchical Trees [46]) or a combination
with vector quantization [39] can be added as further child classes to this hierarchy in the
future.

There are currently three child classes to qwaveletcomp which implement the following
wavelet types (see figure 3.4):

ghaar: lossy Haar wavelets (in contrast to the lossless Haar wavelets in section 3.3.4.1);
daub4: Daubechies 4-tap wavelets [18, 47];

orthowavelet: abstract base class for orthogonal wavelet filters such as Daubechies
wavelets [18, 47] or Coiflet wavelets [18]. The class operates on generic orthogonal
wavelet filters with even length; concrete filters are initialized by its child class ortho-
factory which currently contains the filter coefficients for the Daubechies wavelets with
6-20 taps, the Least Asymmetric wavelets with 820 taps and the Coiflet wavelets
with 6-30 taps.

The reason for separate classes for Haar (2-tap) and Daubechies 4-tap wavelets is that
the overhead of the generic approach has more impact on the performance of short filters
than that of long ones; both could also be integrated into orthowavelet/orthofactory, but
only at a speed penalty. All filters currently used in this engine and their coefficients can
be found in appendix B.

There is no support for biorthogonal wavelets often used in image compression (i.e.
different filter coefficients for transformation and inverse transformation) at the time of

I7For instance values that are too large to fit into the base type appear as very large negative values
and vice versa, e.g. the value 130 appearing as -126 when cast to a signed 8 bit type.

3.4. QUANTIZATION 61

writing this thesis, but these can easily be added as sibling classes to orthowavelet and
orthofactory in the future. Thus, the evaluation of the performance of biorthogonal wavelet
filters for MDD is part of the future work section.

3.4 Quantization

Quantization is a mapping of a space C' (possibly non-countable, e.g. real values) into
a subspace C (normally countable); another view on quantization is partitioning C' into
equivalence classes. A simple example for such a quantization would be the function
fint + R — Z, finy(v) = |[v]| which maps real numbers to integer numbers using floor
rounding. Another, more complex example is the mapping of real valued numbers to float-
ing point numbers on computers, which consist of a constant number of bits for mantissa
and exponent. Quantization is an irreversible process, i.e. it is not generally possible to
reconstruct all exact values ¢ € C from the quantized values ¢ € C. But quantization
allows approximating values using less storage and is therefore an important part of lossy
compression algorithms. In the current state of the compression engine, only wavelets re-
quire quantization, therefore only the quantization of wavelet coefficients will be discussed
in this section in depth. Note that in this context, quantization does not necessarily imply
loss, at least not for integer data: the data is converted to its floating point representa-
tion, transformed and then quantized during analysis, whereas during synthesis the data
is first dequantized, then the inverse transformation is applied to the resulting floating
point data, followed by a conversion of the floating point array back into the required in-
teger representation (another quantization step for integer types). Errors in the quantized
wavelet coefficients can be insignificant enough to be reduced to zero after the final quanti-
zation during synthesis, resulting in lossless reconstruction despite loss in the intermediate
representation.

Efficient quantization of wavelet coefficients is a large field of research in itself [49, 50,
12, 10, 46]. In this context, ”efficient” usually means minimal rate (average number of bits
per cell) with minimal distortion (deviation from the original signal). The most commonly

used objective distortion measure in lossy compression is the so-called signal-to-noise ratio
(SNR) defined as

SNR= (3.35)

which sets the total energy of the original signal (¢;) consisting of N samples in relation
to the total energy of the error (¢; — ¢;). The larger the SNR, the better a signal is
approximated, leading to SNR = oo for the ideal case of lossless reconstruction. Another
frequently used distortion measure is the peak-signal-to-noise ratio (PSNR) defined as

62 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

N max; ¢
PSNR = i (3.36)
Z(éi - Ci)2

(2

which uses the peak energy of the original signal rather than its average. The study of
compression rate vs. distortion is known as rate-distortion theory. Possible approaches to
the quantization of wavelet coefficients can be classified into two major branches:

1. Quantizing the coefficients of an entire band (section 3.3.3 and figure 3.13) with a
uniform number of bits: this typically involves a two-pass approach where statistical
information about the bands is gathered in the first pass, which is then used for the
actual quantization in the second pass. This approach has the advantage of relatively
low complexity, but the compression performance depends critically on the statistic
model(s) which are hard to find for the generic case required in this compression
engine. An approach like this was used in [12, 13], for example.

2. Successive approximation of all coefficients depending on their magnitude, starting
with large coefficients; this corresponds to bitplane coding where the most significant
bits are coded first. One effect of this approach is that the reconstructed data is
refined successively as more of the compressed data is read, i.e. no blocks of certain
length have to be processed in one go, and therefore the decoding process can usually
be terminated at arbitrary points without ”wasting” symbols in incomplete blocks.
Another frequently found effect is embeddedness, where any prefix of an encoded
symbol stream is itself a valid encoded stream (at lower quality), which also allows
encoding data losslessly and merely aborting the decoding process early in case loss
is acceptable, thereby eliminating the need for different compressed data for different
distortion levels. The most popular representatives of this quantization approach are
the Embedded Zerotree [49, 50, 10] and SPIHT [46].

Both approaches are implemented in the compression engine, however the current sta-
tistical model for alternative 1 described in section 3.4.2 is very simple and doesn’t perform
too well in the generic case, therefore the Generalized Zerotree described in section 3.4.3
is the default.

3.4.1 Wavelet Error Propagation

Wavelet transformations — continuous or discrete — are lossless from a mathematical point of
view, i.e. assuming infinite precision of the arithmetic unit performing the transformation,
it is possible to reconstruct any signal without loss from the wavelet coefficients. On a
real computer, there are naturally always limitations on the precision of floating point
numbers, the highest standardized precision being IEEE double precision where a real
number is represented as a 64 bit sequence. In order to minimize transformation errors,
double precision is used for all internal calculations and the wavelet coefficients themselves.

3.4. QUANTIZATION 63

It must be noted, however, that every arithmetic operation can cause an error with a
relative magnitude in the area of the machine precision!®. While this error can be small
enough to still allow lossless reconstruction for some base types, it is usually impossible to
reconstruct an MDD whose channels are already in double precision without loss, because
the wavelet transformation itself introduced an irreversible error.

Because arithmetic errors can’t be avoided in any implementation, it is important
to analyse how these errors propagate in the multiresolution wavelet algorithms. This
concerns errors introduced by limited machine precision, and in particular quantization
errors and their effect on synthesis, where the quantized coefficients are used to reconstruct
an approximation of the original signal. Synthesis starts with average and detail coefficients
at the coarsest scale level Jy, which are used to calculate the average coefficients at level
Jo+1, then these synthesized average coefficients are combined with the (explicitly stored)
detail coefficients at level Jy + 1 to calculate the average coefficients at level Jy + 2 and
so forth until at the finest level J an approximation of the original data is achieved (see
figure 3.11 on page 52). It is imporant to note that the average coefficients at level j
accumulate all errors at levels Jy,...,7 — 1, whereas the detail coefficients — being stored
explicitly on each level rather than being calculated like the averages — only contain the
quantization error they were stored with (figure 3.14 illustrates this for the 2D case). We
will now calculate an upper threshold for the error propagation in multiresolution wavelet
synthesis based on these observations.

Let’s have a look at the synthesis equations (3.24) and (3.25) as well as the filter
coefficient mapping in equation (3.28). Important observations regarding equation (3.28)
are that

e the mappings are bijective, i.e. every p; is mapped to a different hy and every ¢; is
mapped to a different hy;

e there can be no p; = ¢ if both 7 and k are either even or odd. In combination with
the fact that the mappings are bijective, this means that the sets {p;, qx : i, k even}
and {p;, qx : i,k odd} are both identical to the set of all filter coefficients {h;}.

Both conditions are true for all possible filter offsets. The important consequences
regarding the synthesis equations (3.24), (3.25) are that

e every filter coefficient h; appears exactly once in each of the sums;

e the set of filter coefficients folded with the Clj in equation (3.24) is identical to the set
of filter coefficients folded with the d] in equation (3.25) and the same goes for the
opposite sets.

Now we can examine error propagation, assuming approximate coefficients & = ¢/ + (5&1-

and cf{ =& + 631 where 5gz is the error of the average coefficient ¢ and (531- is the error

18The relative magnitude of an error is the ratio of the error to the number the error is modulated on.

64 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

of the detail coefficient d/. The total error on the next finer level (55{1 resulting from a
wavelet transformation with these approximate coefficients is the sum of the errors of the
two average coefficients calculated, i.e. 65{1 = &7 =&+ @ — L), Using the
synthesis equations (3.24), (3.25) we get

o = li (ézipm—zl + CZ{Q%—zl) - zi (C{Pm'—m + d{%ifw)
+ l§ (égp2i—2l+1 + CZ{C]%—%H) - li (Cljp%—Zl-f-l + d{qgi_gl+1)
= li ((5Z,zp2i—2l + 551',1(121‘721) + <5£’lp2i,gl+1 + 5i’lqh',2[+1))
= li (5?1(172@'_21 + Poicari1) + 05 (Qiea + QQZ‘_21+1)) : (3.37)

Due to the previous observations regarding the filter coefficient mappings, we can see
that every filter coefficient h; is folded exactly once with a ¢ ., and a 0}, Now we will

= (|5) and

5d ax mlax(léilb. Then we get the following upper threshold for the error of each value

calculate an upper limit for |(5C7Z , assuming maximum errors o’

c,max

calculated during a 1D wavelet transformation:

|5J+1| = |2 (5g,l (P2i—21 + P2i—2141) + 5&,1(6121‘—25 + 612i—21+1))
l=—o0
Oo . .
< o1 (P2i-21 + P2ioi1) + 07 (Goi—o + Q2i—2l+1)‘
l=—00
< > (|5z,l’(|p2if2l| + |p2i—2ig1]) + |5£,Z|UQ2¢721| + |Q2ze2z+1|))
l=—o00
< 5§,max Z (|p2i—at| + |p2i—2041]) +5g7max Z (|g2i—21] + |g2i—2111])
l=—00 l=—00
2aN—1
= (5g max + 6d max) Z ’hll
1=0
= (5g max + 6d max) (338)

2N -1
where H = Y |Iy| is the sum of the absolute values of the filter coefficients, i.e. a
[

filter-dependent constant; since wavelet filter coefficients are normalized to 3 h; = v/2 (see
equation (3.26)), we can always approximate H > /2, i.e. the error can grow for all possible
wavelet filters. Now let’s assume an upper error threshold d,,,, for the quantization error of

3.4. QUANTIZATION 65

all coefficients (coarsest average and all detail bands), i.e. dpayx = max (670 max(6} .),
)] b

using which equation (3.38) can be generalized further to the form

1675 < (07 s F Omax) H. (3.39)

c,l — c,max

In a D-dimensional wavelet transformation, average and detail bands at the same scale
level are transformed along each dimension, i.e. D times (see section 3.3.3). Each pass over
the data halves the number of bands by merging all average bands along the current direc-
tion with their corresponding detail bands!®, thereby also merging their errors according
to equation (3.38). A 2D example of how the error propagates in this case is shown in
figure 3.14.

cc dd
6g,max 6max
H(dg,max + 6max) 2]¥(5ma‘x H2<5g7max + 3(Smax)
cd dc
5max 5max

Figure 3.14: Propagation of maximum error in 2D wavelet synthesis
This figure shows how the mazimum error propagates in 2D wavelet synthesis. The image to
the left shows the bands on the scale level currently processed with their respective labels and
mazimum errors. The maximum error in the cc band was accumulated from coarser scale
levels, whereas it’s assumed to be constant for the detail bands which were stored explicitly.
The center image shows these bands after a vertical wavelet synthesis pass which merged
bands (cc,cd) and (dec,dd) and their errors according to equation (3.38). The rightmost
image shows the result of applying a horizontal wavelet synthesis pass to the bands in the
center image, which again merges two bands and their errors in the same manner. Note
that the order in which the passes are performed does not affect the final error.

So starting with one average band with a maximum error 672 and 2” —1 detail bands

c,max

with maximum error d.,, we get one band with a maximum error H (62 + ,,.,) and

¢, max

2P-1 _ 1 bands with a maximum error 2H ém. after the first pass by applying equation
(3.39) to matching average and detail bands. In the next pass, these errors have to be used

instead of the 07 ., and &} . in equation (3.38), yielding one band with a maximum error

H2(65P 4+ 30m42) and 2P~2 —1 bands with a maximum error 4H26,,,,,. Continuing in this

fashion, we get one band with a maximum error Hi(532_ + (20 — 1)8max) and 20— — 1

¢, max

bands with a maximum error 2! H%0,., after the ith pass and after the full D passes just
one band (the total average band at the next finer level) with a maximum error

Ye.g. in the 3D case: a pass along the first dimension merges bands cxy with bands dxy, x,y € { ¢,d }.

66 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

§i+1L.D < HP (5]}D + (2D — 1)5max) . (340)

c,max c,max

Starting from the coarsest level and applying this formula over j scale levels, we can
see that the maximum error modulated on a coefficient in the finest total average band is
bounded by

j—2
61D < HP G (2DHU‘1)D +2P -1 H“J> : (3.41)

c,max
1=0

This can be proven by complete induction and equation (3.40); on the coarsest level,
the total average band has a maximum error (523&}(< dmax because it was stored rather
than calculated. So after the coarsest level is processed (j = 1) , the error is bounded by
HP (0ax + (2P — 1)0max) = Omax2P HP according to equation (3.40), which is identical to
the value of equation (3.41) for j = 1. Now for the induction step: by entering equation
(3.41) as 622 into equation (3.40) we get

c,max

j—2
Sty < HP (HDémax (QDH(jl)D +@7 =13 H iD) +(27 - 1)5max)
1=0
j—1
= HP0pa (2DHJ'D @71 HP 4+ (27 - 1>)
i=1

j—1
= HP0ax (2DHjD +2P-1)> H“j> :

=0

which is identical to equation (3.41) with 7 — j + 1, thereby proving equation (3.41). An
equivalent form of equation (3.41) without the sum is

(3.42)

c,max

. . HG-DD _ 1
61D < HP G <2DH<J DD 4 (2P — 1)ﬁ> :
which is better suited to examine the behaviour for high dimensionality or large number of
scale levels. As can be clearly seen in this form, the maximum error can grow exponentially
in both the number of dimensions as well as the number of scale levels in the worst case,
which seriously affects the numerical stability of multiresolution wavelet algorithms in
these cases, at least for low rates. Although the actual error propagation is usually far
less dramatic, the worst case behaviour must be kept in mind; in particular it is advisable
to reduce the number of scale levels for high-dimensional data. Because wavelets work
best on smooth data — which is mostly data with a spatial and/or temporal interpretation
— the dimensionality of the data being transformed is typically limited to at most 4, so
the exponential behaviour of equation (3.42) is not a very severe restriction in real life

applications.

3.4. QUANTIZATION 67

3.4.2 Homogeneous Band Quantization

The simplest way to quantize wavelet coefficients is defining equivalence groups on all bands
and using a fixed number of bits for all coefficients within bands in the same equivalence
group. The simplicity of this approach derives from the fact that every coefficient only
has to be visited twice — once while gathering statistical information about the data, such
as the value range, and once when actually encoding — and there is no need for complex
data structures like in the case of the Generalized Zerotree, which will be introduced in
section 3.4.3. This simplicity makes the algorithm fast, but often the quality is considerably
inferior to that which can be obtained using zerotree coding at the same rate; furthermore
the rate depends critically on the bit allocation strategy across band equivalence groups,
which is a non-trivial problem and very dependent on the kind of data being transformed,
i.e. strategies for 2D images may differ wildly from strategies for 4D vector fields, but an
MDD compression engine can’t afford to specialize. These things make homogeneous band
quantization inherently problematic in this generic context, despite the lower complexity; it
is mainly supported by the compression engine both for completeness and historic reasons,
being the first attempt at the quantization of wavelet coefficients. Homogeneous band
quantization is based on three modules performing the following tasks:

e defining equivalence groups on the wavelet bands. This is done by the Band Iterators
covered in section 3.4.2.1;

e gathering statistical information on the coefficient distribution in all band equivalence
groups and deciding how many bits to use per coefficient in each equivalence group.
This is done by a quantctrl object (see section 3.4.2.3);

e quantizing sequences of coefficients using a given number of bits and a quantization
algorithm (e.g. linear, exponential, ...), which is done by a quantizer object (see
section 3.4.2.2).

The bandquant class combines these three modules for the actual homogeneous band
quantization; it derives from the wavequant class, which defines the interface for the quan-
tization of wavelet coefficients (see figure 3.4 on page 37). An approach like this was also
suggested in [12], for instance, albeit with the usual bias on image compression and more
emphasis on the statistical model than in this work.

3.4.2.1 Band Iterators

The first step in quantizing the coefficient array is to decide on an order in which the bands
should be processed and which bands are grouped together to share a statistical model.
There are two extreme approches:

e all bands share the same statistics, i.e. the value distribution and the extreme values
are determined by processing all bands in one go. This approach has the advantage
that there is a minimum amount of meta data (the data distribution) which has

68 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

to be stored in addition to the actual band data for the decoder. The obvious
disadvantage is loss of resolution in local deviations from the statistical averages;
this is very common in wavelet coefficients, because most detail coefficients are very
small compared to the average coefficients and will therefore often be quantized to
zero if they share the same statistics as the average band;

e every band has individual statistics. In this case, each band can be encoded with
its ideal statistical model, but the amount of meta data that has to be stored is
considerably larger than in the first case. Because the meta data needed per band
is usually very small compared to the actual band data (typically minimum and
maximum value, i.e. two floating point numbers), this is not a critical problem,
however.

In order to use a good statistical model for each band while keeping the amount of
additional meta data low, a compromise between these two extremes has to be found.
Note that because the size of the meta data is relatively small, the disadvantages of the
first extreme easily outweigh those of the second, i.e. using more statistical units than
strictly necessary has less negative influence on the quantizer’s efficiency than using too
few.

Band iterators perform the task of grouping bands into logical units (band equivalence
groups) sharing a statistical model. Bands are iterated over in such a way that those bands
belonging to the same equivalence group are visited consecutively, as required to efficiently
encode these groups. This functionality is provided by a separate class hierarchy with an
abstract base class banditerator defining the common interface. There are currently three
different band iterator classes available:

isolevel: all bands on the same scale level are grouped. The number of band equivalence
groups scales with the number of resolution levels;

leveldet: all bands on the same scale level and with the same degree of detail are grouped.
The number of band equivalence groups scales with the product of the number of
dimensions and the number of scale levels;

isodetail: all bands (across scale levels) with the same degree of detail are grouped. The
number of band equivalence groups scales with the number of dimensions.

Band equivalence groups are numbered, starting from 0 at the total average band, and
iterated over in increasing order. For isolevel and leveldet, the numbers increase towards
finer levels, for leveldet and isodetail the numbers (also) increase with the degree of
detail, so for instance cd comes before dd; this order is relevant when manually fine-tuning
the bit allocation in the band statistics module (see the relgbits parameter in appendix
C). In most cases leveldet performs best and will be used for the tests in section 4.3.2 and
is therefore the default band iterator (it also has the finest equivalence group granularity).

3.4. QUANTIZATION 69

3.4.2.2 Quantizers

The actual quantization of the real-valued coefficients is performed by a separate quantizer
class hierarchy. Given minimum and maximum values, all values are translated and scaled
such that the midrange value is mapped to 0 and the minimum and maximum values are
also the extreme values of the quantized representation, assuming a linear quantizer®’; the
offset and scaling factor are stored as meta data for the dequantizer. Quantizers don’t
gather any statistical information about the data themselves, but receive the relevant
information from a separate quantctrl object (see section 3.4.2.3). The quantized data is
not aligned to bits but to the smallest standard data type with at least the same size, e.g.
bytes for 1-8 bits or 32 bit integers for 17-32 bits. It is eventually written to a compression
stream which (implicitly) removes unused bits in case there is no standard base type with
exactly the size required, e.g. when quantizing to 4 bits and the remaining 4 bits in the
byte (= standard base type used in this case) are unused. Because most compression
algorithms examine data on byte- rather than bit-level, they would actually perform worse
if the quantized data was not at least aligned to bytes.

The quantizer hierarchy roots in an abstract base class defining the interface. When
quantization is started, midrange offset oy, and scale factor** s, that should be applied
to each value v in the form v = (v — om,)s, before the actual quantization, as well as a
compression stream which should receive the quantized data are passed to the quantizer;
following that the data can be streamed into the quantizer. Note that use of the quantizer
classes is not limited to wavelet coefficients, but extends to any kind of real valued data
and can therefore be used even outside the tile compression context. Currently available
quantizers are:

linear: linear quantizers are the most common ones and achieve the best results when the
data is distributed uniformly across the value range. A linear quantizer using b bits
per value merely transforms each value (using the midrange offset and scale factor)
so it fits into the range of a signed integer type with b bits, i.e. from —2°~! to 20~ —1,
and then rounds the result to the nearest integer to obtain the quantized value, i.e.
vy = v+ %J For instance when quantizing values ranging from -1000 to 2000 to 5
bits, then oy, = 500 and s, = 0.01. Applying these to the value 300 would result in
the quantized value v, = | (300 —500)0.01 +0.5] = |—1.5] = —2. The quantizer step
size 22 1 is constant across the entire value range. In the example, the quantizer step

size is 100 which leads to a maximum error per coefficient of 50.

exponential: this exponential quantizer has increased resolution around 0, which de-
creases exponentially for large values. This is achieved by dividing the value range of
the quantized data (—2°! to 2= —1 for b bits) into buckets containing 2" uniformly

200ther types of quantizers can use midrange offset and scale factor to reconstruct the minimum and
maximum values of the data if necessary.

2INote that this scale factor has nothing to do with the multiresolution scale levels of the wavelet
transformation.

22The maximum difference between two values that are quantized to the same value.

70 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

distributed values each. This results in 2°~" buckets, half of which cover the positive
and half the negative values of the quantized data range. The range of values in the
original data covered by a bucket is twice the range of the bucket’s nearest neighbour
towards the zero point of the quantized data, e.g. if the first positive bucket covers
the range [0, 3[then the next positive bucket covers the range [3,9], the next one

9,21] etc. With the smallest value range vy we get the largest positive value that
can be represented that way as vp.c = v ' XT:OI 20 = 15(2°"" — 1) = —Vpin, which can
be used to calculate vy such that [Vmin, Umax] cOvers the entire range of the original
data centered around 0. As a result, every bucket can be assigned a unique value
range in the original data and a value is quantized by first determining the number
of the bucket it falls into (b — r bits of the quantized value) and then the closest of
the 2" values within the bucket (the remaining 7 bits of the quantized value). Us-
ing the same example as for the linear quantizer and 8 buckets with 4 entries each
(r = 2), we get vg = 529°7 = 2% &~ 214.286. The value 300 is offset from the
midrange point at 500 by -200 and therefore falls in the first negative bucket and
within that bucket it’s closest to the last of the four values (which covers the inter-
val | — 9000 —4000] ~] — 214.286, —160.71] in the original data). How exactly bucket
numbers and nearest bucket value are encoded in b bits is of no further concern in
this example. The minimum quantizer step size is % ~ 53.57 in the bucket closest
to zero, whereas the maximum quantizer step size is 8 times that (/ 428.571), so the

maximum error per coefficient ranges from ~ 26.79 to ~ 214.286 in this example.

Which quantizer should be chosen depends entirely on the data distribution. If there
is a concentration in the middle of the value range and relatively few larger values, the
exponential quantizer will result in lower average quantization error, because the quanti-
zation error is smaller in the buckets close to 0. In case the data is distributed uniformly,
the opposite applies and the exponential quantizer’s large errors for big values outweigh
the small errors in the middle and result in a bigger average quantization error. Note that
ideally there should be quantizers for every major distribution class, so the optimum one
can be chosen by a statistical data analyser. More on this issue will follow in the next
section.

3.4.2.3 Quantization Statistics

Efficient quantization requires knowledge about properties of the data being quantized,
foremost of all its value range. For instance if the value range assumed by the quantizer
was twice as large as the actual range, one bit of precision in the quantized data would be
wasted; on the other hand, if the assumed value range was smaller than the actual one, huge
quantization errors would result for those values outside the assumed range. Generally
speaking, the more information about the data is known and used in quantization, the
smaller the distortion gets without having to increase the number of bits. For instance
if the data is concentrated in certain areas, a quantizer with higher resolution in these

3.4. QUANTIZATION 71

areas usually achieves lower average distortion than a standard linear quantizer. It follows
from these considerations that the data has to be analysed first before it can be quantized,
making the quantization a two-pass operation. The dequantizer doesn’t have a statistical
pass, because initially it only sees the quantized data and not the original data, therefore
data properties used by the quantizer (quantizer meta data) must be stored along with the
quantized data to allow the dequantizer to correctly interpret the data.

The task of gathering statistics and then encoding the data based on these statistics is
performed by an object of the quantctrl class. Each band equivalence group is encoded in
two passes:

1. statistical pass: a new statistical unit is started by issuing a call to the
band _start_statistics() method. Following that, all values in the same band
equivalence group are fed into the quantctrl object using the band get_statistics()
method, whereby properties meaningful for the quantization are extracted. After all
data in the equivalence group has been processed that way, the statistical pass is
ended with a call to the band_end_statistics() method, after which another sta-
tistical pass or an encoding pass can follow.

2. quantization pass: the actual quantization of the band equivalence group starts
with a call to the band_start_encode () method, which initializes a quantizer based
on the statistical data available. Data in the currently processed band equivalence
group is then fed into the quantctrl object using the band put values() method
which passes it on to the quantizer used. After all data has been processed that way,
the quantization pass is terminated with a call to the band_end_encode () method.

Statistical data used for all band equivalence groups is stored internally, so after the co-
efficients of all channels have been processed, the quantctrl object contains the quantization
meta data for the coefficient arrays of all channels; this meta data is stored within the com-
pressed tile along with the meta data of all other compression modules involved in the cur-
rent compression operation. For decoding, first the meta data is read from the compressed
tile, then all band equivalence groups are dequantized using the band start_decode(),
band_get_values() and band end decode () methods. Note that the quantctrl class is not
restricted to the wavelet subband context but can be used on arbitrary real valued data,
just like the quantizer hierarchy.

Ideally the quantctrl class will first gather substantial statistical data from all band
equivalence groups, use a quality measure like a desired signal-to-noise ratio to determine
how many bits to use for the quantization of each group and which quantizer is best suited
for the data distribution within the group. However, the currently implemented system is
less powerful in that it neither automatically distributes the bits nor chooses a quantizer,
both of which are left for the user to decide. Both extensions should be implemented
as part of the future work because they’d simplify using homogeneous band quantization
and make it more efficient; since there is also Generalized Zerotree coding available (see
section 3.4.3), which is both easy to use and typically achieves better compression rates

72 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

than more sophisticated variants of homogeneous band quantization [12], work in this area
was postponed for the time being. Note that in order to exploit special data distributions,
several new types of quantizers would have to be added as well.

The currently implemented system allows specifying the base number of bits to use
per quantized value (1-31), a distribution function d : IN — IR™ which determines for
each band equivalence group how many bits relative to that base number should be used
within that group, and a cutoff group number g.,, which is the number of the first band
equivalence group which should be ignored (quantized with 0 bits; this allows discarding
detail information finer than a given resolution level, i.e. this detail is ignored entirely by
both encoder and decoder). The distribution functions currently available (for band groups
g with 0 < g < goo) are

const: d(g) = 1.0: use the same number of bits for all band equivalence groups;

linear: d(g) = 1.0 — gcio: linearily decrease the number of bits with the band equivalence
group number;

exponential: d(g) =e” ()55 exponentially decrease the number of bits with the band

equivalence group number. The function is normalized to return % for g = geo;

2
gauss: d(g) = e ®(55) exponentially decrease the number of bits with the square of
the band equivalence group number;

custom: d(g) = user defined: the user specifies the bit allocation for each band equiv-
alence group manually as a comma-separated string (see the parameter system in
section 3.6 and the relgbits parameter in appendix C).

The kind of distribution function used is stored as an enumerator in the quantiza-
tion meta data. For the custom distribution function the bit allocation for each band
equivalence group has to be stored in the meta data as well.

3.4.3 The Generalized Zerotree

In order to improve the efficiency of encoding wavelet coefficients, they are typically en-
coded depending on their magnitude rather than their band, because large coefficients
contain most of the data’s characteristic information, irrespective of their band. This ap-
proach is related to bitplane coding often used in computer graphics, where arrays with
a depth of b bits are represented as b arrays with a depth of 1 bit; if these arrays are
encoded in decreasing order of bit significance, the array values are encoded in decreasing
order of magnitude and the data approximation is successively refined with each bitplane
during decoding. This approach also treats all coefficients identically, no matter what band
they belong to, so it doesn’t require any heuristics about the number of bits to allocate
to each band. Due to this, it can adapt to data with different characteristics far easier
than techniques using a fixed number of bits per band can. On the other hand, it must be

3.4. QUANTIZATION 73

noted that successive refinement is more expensive, because the values have to be touched
several times as they're encoded bit-by-bit.

More sophisticated bitplane coding techniques additionally exploit the multiresolution
hierarchy of wavelet bands by correlating coefficients corresponding to the same position in
the original data, but in neighbouring scale levels. The argument in favour of this approach
is that sharp edges in the original data usually result in large wavelet coefficients on all scale
levels, and conversely smooth areas in the original data result in small wavelet coefficients
on all levels. One of the most popular representatives of this variety of bitplane coding
algorithms is Shapiro’s Embedded Zerotree (EZT) [49], another one is SPIHT [46]; we will
concentrate on EZT here, which was generalized and implemented in the RasDaMan
compression engine.

3.4.3.1 The 2D Zerotree Structure

We will first introduce the tree structure of the EZT for the original 2D case and then extend
this structure for an arbitrary number of dimensions in section 3.4.3.4. Regarding the
correlations of coefficients, which are modelled as parent-child nodes in the tree structure,
we have to recall that the wavelet coefficients within each band represent (properties of) the
entire original data at specific scale levels, e.g. the coefficients in the corner points of each
band correspond to data properties in the corner points of the original data. Combined
with the fact that the size of the bands is halved in each dimension every time the scale
level is coarsened, this means that one wavelet coefficient at level j covers the same area
in the original data as two coefficients in each dimension of the next finer level j + 1 (see
figure 3.15). Consequently, there is a mapping function py : (Z?* %) — (Z,Z)* which
maps a 2D coordinate (x,y) relative to the band origin and a scale level j to a 2D interval
in the spatial domain of the original data:

pa(w,y),5) = 2772, 2" (@ + 1) = 1 x 2777y, 27 (y + 1) — 1], (3.43)

using the same variable binding as in section 3.3.2, where J was the finest scale level and
7 < J were the coarser scale levels, up to the coarsest level Jy. The EZT uses this fact to
correlate nodes covering the same area in the original data in the following way (see figure
3.15 for a graphical representation and figure 3.13 on page 55 for the band labels used):

e a "zerotree” structure consists of as many subtrees as there are average coefficients
on the coarsest level (ccl in the example in figure 3.15); each subtree root contains
one average coefficient.

e the average coefficient on the coarsest level at position (x,y) relative to its band’s
origin covers the same area in the original data as the detail coefficients at the coarsest
level (cd1, dcl, dd1 in the example) at position (z,y) relative to their bands’ origins.
Therefore each root node has up to three child nodes in the detail bands at the same
level; boundary effects could reduce the number.

74 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

e cach (non-root) node at relative position (z,y) on level j covers the same area in the
original data as the nodes described by equation (3.43) in all bands on level j + 1.
However, coefficients are usually correlated stronger if they are for the same direction,
in other words the coefficients of band cd1 are correlated stronger with those of band
cd2 than those of band dc2 or dd2. Furthermore, modelling the correlations for
all directions would result in a DAG (Directed Acyclic Graph) rather than a tree,
thereby increasing the number of correlations dramatically. Therefore, only bands of
the same direction are correlated in the EZT structure, which results in up to four
child nodes at the next finer scale level for each parent node; once again, boundary
effects can reduce that number.

o

e

Figure 3.15: Parent-child node relationships in a 2D Zerotree
This figure shows the zerotree structure for the 2D case; the matching band decomposition
can be found in figure 3.13 on page 55. Using the same labels for the band decomposition,
all root modes are located in band ccl and can have child nodes in the detail bands at the
same scale level (cd1, del and dd1). Each of these can in turn have up to four child nodes
at the next finer scale level in the band with the same direction.

Note that in this tree structure, there are exactly as many nodes N as there are co-
efficients in the array the tree is based on, because every node, including inner nodes, is
associated with a value in the original array data (compare with figure 3.15). This is in
contrast to e.g. a Quadtree, where only leaf nodes have this property, but not the inner

3.4. QUANTIZATION 5

nodes, and the ratio of nodes in the tree to the number of coefficients in the array is % (for
the 2D case).

Also note that the tree structure depends on the band partition only, not the coefficients
themselves. The band partition in turn depends on the spatial extent of the original data
and the number of scale levels in the band partition. That means that while the spatial
extent and the number of hierarchical levels remain constant, the tree structure remains
constant as well and can be reused. For instance in a colour image, the tree structure only
has to be built once and can then be used to encode the coefficients of all three colours.
If many tiles in an MDD have the same spatial extents, there are also performance gains
possible by caching the tree structure over different tiles — at a memory premium, of course.

3.4.3.2 Encoding and Tree Alphabet

Once the EZT structure has been built, it can be used to iteratively encode the wavelet
coefficients within the bands it is based on. The original EZT [49] used two passes per
iteration and a six-symbol alphabet for this purpose. The data is processed in alternating
dominant and subordinate passes until the coefficients have been encoded with sufficient
precision; this can be the case when an SNR threshold was met (the most common policy),
or the absolute values of all coefficients are below a residual threshold, or similar criteria.
The coding starts with an initial threshold value T with & < T' < M, where M = m;ax(|v¢])

is the maximum absolute value of all coefficients in the tree (any threshold value 7" within
this interval can be used as initial coding threshold, typically % is used); 7" is halved after
each iteration, as the data is successively refined. The two passes work as follows:

dominant pass: in this pass, the nodes on the coarsest level are iterated over for signifi-
cance coding (a node is significant if its absolute value is larger or equal to T'). If a
node hasn’t been encoded as significant in a previous dominant pass yet, its signifi-
cance is checked against the current threshold value T" and one of the following four
symbols is emitted depending on the result:

zpositive: the node is significant and has a positive value;
znegative: the node is significant and has a negative value;
zisolated: the node is insignificant, but at least one of its children is significant;

ztreeroot: the node is insignificant and so are all of its children.

In case the symbol is zpositive or znegative, the node will be ignored in all sub-
sequent dominant passes; its child nodes will always be iterated over, however. In
case the symbol is ztreeroot, no children of this node are processed any more in
this dominant pass; if the symbol differs or the node has already been encoded as
significant in a previous dominant pass, all its child nodes are processed recursively
in the same manner. This allows exploiting correlations between wavelet coefficients
over neighbouring scale levels and typically greatly reduces the number of symbols

76 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

needed to represent the tree. In case the node is significant (and because of the
initial threshold value and the encoding algorithm’s design also smaller than 27" at
all times, i.e. |v;] € [T, 2T7), its reconstruction value will be the midpoint value £37
(depending on its sign), which is the value the subordinate pass (and of course the
decoder) will operate on in subsequent passes.

subordinate pass: in this pass, all nodes that have already been encoded as significant
in a previous dominant pass are refined with one additional bit of precision, which
determines whether the currently used reconstruction value is larger or smaller than
the actual value by subtracting or adding % respectively. Thus, the subordinate
pass uses a two-symbol alphabet zplus, zminus and ideally a different compression
stream.

Newer publications on the EZT [10] extended the alphabet used in the dominant pass
with additional symbols for the cases where the node is significant (positive or negative)
but none of its children are; this extension can easily be added to the existing zerotree
implementation, but currently the original alphabet is used (more on encoding variants
follows in section 3.4.3.7).

Note that the subordinate pass doesn’t work with exact matches, so if a coefficient was
already encoded exactly before the subordinate pass, its value will change to a less precise
value in the subordinate pass (whether the value will be incremented or decremented in this
case is a heuristics on the part of the encoder and only affects the sign, not the amplitude
of the error). Nor is it possible to stop further processing of these exact coefficients with
the tree alphabet listed above, because this would require an extra symbol to inform the
decoder that an exact value has been reached, as it has no other means to differentiate
between a fully and a partially encoded value. This shortcoming of the subordinate pass
has hardly any impact on the encoding of real-life wavelet coefficients for two reasons,
however:

e the coefficients are real numbers which almost never allow an exact match in the first
place;

e in the rare event that an exactly encoded coefficient was modified in a subordinate
pass, the coefficient will converge towards its exact value again in subsequent sub-

) =1 .
ordinate passes with arbitrary precision because 2'x = x - khm > 27 where 2'x is
——00 i—k
J

the value the exact match was changed by (this value is halved in each subsequent
subordinate pass, i.e. 20 'z, 272z, ..., hence the sum).

The compression stream most frequently used to actually compress the symbols emitted
during encoding is an adaptive arithmetic coder as described in section 3.1.1. The small
size of the alphabet greatly improves the performance of the adaptive layer and thereby
results in a substantial speedup compared to ZLib which performs very badly on the EZT
alphabet (see results section 4.3.3).

3.4. QUANTIZATION 7

The successive refinement of the encoded data also makes the zerotree embedded, i.e. the
symbol stream for data with a given quality also contains (= embeds) the symbol streams
for data at all lower quality levels and is a prefix for all versions of the data at higher
quality. Thus, higher quality approximations are done by simply appending symbols to
the stream. If the data is encoded without loss, it is therefore possible to serve arbitrary
quality requests with one stream of zerotree symbols by truncating the stream earlier for
lower or later for higher quality. It also allows meeting exact SNR rates much easier than
with the homogeneous band quantization covered in section 3.4.2. Finally, the amount of
meta data that has to be stored along with the encoded data to allow correctly decoding
the zerotree symbol stream is very small, consisting solely of the initial threshold value.

3.4.3.3 Encoding Example

This section illustrates how EZT coding works by encoding a small 2D example. The
coefficient array contains 4 x 4 coefficients over two scale levels in seven bands, where each
band is represented graphically by a frame. Furthermore, each node in this example has an
entire band as children, which is not normally the case, but keeps the example small and
easy to handle. The coefficient values were chosen at random. The coarsest average band
is to the top left and contains one coefficient, whose three children are in the detail bands
of the same level and each contain one coefficient as well. Each of these detail coefficients
has four children in the next finer band of the same direction. The order in which child
nodes within a band are processed was not specified by the original EZT publication; I
will use Z order, i.e. top-left — top-right — bottom-left — bottom-right as shown in figure
3.16.

For each iteration, threshold and reconstruction value will be shown, followed by a
graphical representation of the band structure to the left and the symbols output in dom-
inant and subordinate pass to the right. For more clarity, values encoded in the dominant
pass will be appended to the output symbol in parantheses; encoded symbols will be added
to the subordinate list (SL), which has the format actual value: current reconstruction value,
which is initially empty and will be shown after both passes. Values encoded as significant
in a dominant pass will be replaced by an X in the band diagram of the next iteration
and ignored in subsequent dominant passes. In order to save space, the symbol names will
be abbreviated throughout this example. In leaf nodes, the symbols zroot and zisol are
equivalent and zisol is used in preference. In case of an exact match at the beginning of
the subordinate pass, the value is incremented via the zplus symbol; in this case zplus
is shown (underlined to stress this special case; the symbol actually output is the regular
zplus).

The symbols from the zerotree alphabet listed for dominant and subordinate pass are
for the current iteration only. After each iteration, these symbols are written to the com-
pression stream and the next iteration starts with empty symbol lists. Only the subordinate
list accumulates information from all previous iterations, but is discarded once encoding
stops.

Before encoding an entire coefficient tree, I will first show which symbols are output for

78 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

ccl cd2

o
o}

dc2

cdl
ddi)/

Figure 3.16: Zerotree example relationships and coding order
These figures show the band decomposition of the 4 X 4 wavelet coefficients used in the
zerotree coding example. To the left, the parent-child relationships are explained using
arrows from each parent node to all its children. The encoding order can be seen to the
right, where for each tree node its coding position is represented by an encircled number and
the arrows describe the coding path (Z-order). Not all nodes are visited during a dominant
pass (e.g. no nodes in cd2 will be visited if the node in cd1 was a zerotree root in this and

all previous dominant passes), but the numbers of the nodes processed in a dominant pass
are monotonously increasing.

a leaf node with the coefficient value 7 during each iteration. The table has to be read left-
to-right and top-to-bottom; the subordinate list is shown twice, once after the dominant
pass and once after the subordinate pass. This example also shows how the reconstruction
value converges towards the actual value after an exact match was destroyed with zplus.

T | dominant SL | subordinate SL

16 zisol

8 zisol

4 Zpos 7:6 zplus 7:8

2 78 zminus 77

1 77 zplus 7:7.5
0.5 7:7.5 zminus 7:7.25
0.25 7:7.25 zminus 7:7.125

Now for the encoding of a real zerotree, where additionally the order in which nodes
are encoded and relationships between the values of parent and child nodes have to be

3.4. QUANTIZATION 79
taken into account.
Iteration 1: Threshold 16, reconstruction value 24
171 8 3 1 Dominant:
zpos(17), zroot(8), zroot(7), zroot(11);
rppzo9 SL: 17:24
6 2 0 4 Subordinate: +8
zminus;
1 5 3 2 SL: 17:16
Iteration 2: Threshold 8, reconstruction value 12
X 3 3 1 Dominant:
zpos(8), zroot(7), zpos(11l), zisol(3), zisol(1),
- l11l 2 o zisol(2), zpos(9), zisol(0), zisol(4), zisol(3), zisol(2);
SL: 17:16, 8:12, 11:12, 9:12
6 2 0 4 Subordinate: +4
zplus, zminus, zminus, zminus;
1 5 3 2

SL: 17:20, 8:8, 11:8, 9:8

Iteration 3: Threshold 4, reconstruction value 6

Dominant:
zpos(7), zisol(3), zisol(1), zisol(2), zpos(6), zisol(2),
zisol(1), zpos(5), zisol(0), zpos(4), zisol(3), zisol(2);
SL: 17:20, 8:8, 11:8, 9:8, 7:6, 6:6, 5:6, 4:6

XX |3 1
7T X |2 X
6 2 0 4
1 5 3 2

Subordinate: +2
zminus, zplus, zplus, zplus, zplus, zplus, zminus,
zminus;

SL: 17:18, 8:10, 11:10, 9:10, 7:8, 6:8, 5:4, 4:4

Iteration 4: Threshold 2, reconstruction value 3

XX |3 1
X | X |2 X
X 210 X
1 X |3 2

80 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Encoding continues in a similar manner until sufficient precision has been reached, but
the example ends here.

3.4.3.4 The Generalized Zerotree Structure

The original EZT paper [49] was for the 2D case only; several years later there was also a
publication on a 3D version used in wavelet-based video compression [10], but no generic
solutions are known so far. Because the EZT structure depends on the band partition
performed by the multiresolution wavelet analysis, which in turn depends on the dimen-
sionality, the EZT structure also changes with the dimensionality; for instance the number
of child nodes changes with the number of dimensions.

The number of bands created on each scale level by the D-dimensional wavelet transfor-
mation described in section 3.3.3 is 27, because each pass splits all bands in the currently
processed scale level in two (compare with figures 3.6, 3.7 starting on page 43), so in the
2D case an average band is partitioned into four bands on each level, in 3D into eight
bands etc. The number of child nodes on the coarsest level of the EZT equals the number
of bands on the coarsest level minus 1 (the band containing the parent node itself, ccl in
figure 3.13), i.e. 2P — 1, which is also the number of directions. The mapping function in
equation (3.43) becomes a function pp : (Z”, Z) — (Z,7)" in the general case:

po((x1,...,2p),j) = [27 P2, 279 (2 +1) = 1] x -+ x [272p, 2" (zp +1) — 1] (3.44)

and consequently a coefficient on level j covers the same area in the original data as 2°
coefficients on the next finer level j + 1, leading to 2P child nodes for each inner node*
that isn’t also a root node. For a node at the relative position (xi,...,xp) in a band in
(the non-top) level j, the child nodes on level j + 1 are therefore located at the relative
positions

children(xy,...,zp) = {(2x1 + 21,...,22p + zp) : z; € {0,1}} (3.45)

in the next finer band in the same direction for all possible combinations of z; resulting in
legal positions (boundary effects may make some positions illegal). As a consequence, the
node size and with it the size of the tree structure grow exponentially with the number
of dimensions. This is a very undesirable property, but it can be avoided with careful
implementation [21] by exploiting the fact that no leaf node has any children, as shown in
section 3.4.3.5.

3.4.3.5 Implementational Issues

There are several problems implementing this general tree structure in an efficient way, like
for instance the variable (worse yet: exponential) number of child nodes. In this section,
I will propose a tree representation which has the following properties, some of which are
also highly attractive for a non-generic version:

23 An inner node is a node which has at least one child node.

3.4. QUANTIZATION 81

e totally generic with respect to the number of dimensions;

e no hidden memory overhead per node by using a node pool for storing all tree nodes.
If each node was allocated from the system heap individually, such hidden overhead
— typically 4-8 bytes per heap block — couldn’t be avoided;

e the tree structure contains no pointers, only integers, and could therefore also be
put into ROM for special applications like a video compression board with fixed
resolution, where RAM is a premium;

e the values at the tree nodes and the array data the tree is based on are one and
the same, i.e. the tree references the array values. This avoids copy cycles from one
representation into the other before encoding or after decoding;

e the memory consumption of the tree structure relative to the number of nodes de-
creases with the number of dimensions.

The memory overhead per node can be addressed by claiming a block of memory with
a size large enough to hold all tree nodes and allocate nodes from there; this is the node
pool. Because nodes are only allocated and never freed when building the tree structure,
this is a trivial matter of incrementing a counter each time a node is allocated and doesn’t
require any complicated heap management functionality.

The memory structure of each node is still undefined at this point, so let’s analyse the
requirements: each tree node contains 2° references to child nodes (which may be NULL)
and one node value?*. The naive implementation for an entity like this would be a structure
containing 2 pointers and a value, but there is a better way using self-describing integers
for everything. First up, each node can be assigned a unique node number which doesn’t
necessarily have anything to do with the node’s position. The NULL value can be expressed
by a special integer noChild, such as the largest integer value possible. As for the node
values, these can also be expressed as references, i.e. offsets into the coefficient array the
tree is based on. If we store value references transposed by the maximum number of nodes
in the node pool Ny, the integers ¢ become self-describing references:

1 =noChild NULL reference; otherwise:
0 <i < N; reference to a node (3.46)
N; <i reference to a value

There are alternative approaches like using a specific bit to differentiate between the
reference types, of course; but this encoding has the advantage that all references lie in
a continuous numeric range without undefined values between minimum and maximum
reference number.

It must be mentioned that this approach has the disadvantage of higher complexity,
because in order to interpret a reference i encoded like this it first has to be compared

24The root nodes actually have one child reference less, however the current implementation doesn’t use
different node structures for root nodes, but merely marks one child reference as invalid there.

82 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

against Ny and then used to either calculate the address of the node by adding ¢ times the
node size to the start address of the node pool (i < Nj), or the address of the value by
using ¢ — N; as index into the coefficient array (¢ > N;). But this method to encode nodes
also has two major advantages:

e all attributes of a node have the same type and can therefore be represented by a
subarray of length 2P + 1, which is a very convenient way to model this dynamic
structure. The encoding chosen in this engine is to use the first entry in a node for
the value reference and the remaining 27 entries for the child node references, which
allows some optimizations, but the decoder could also be made to work correctly
without knowing the position of the value reference, since all references are self-
describing;

e by encoding the values as references to values, tree structure and array data become
equivalent and changes to one representation are immediately visible in the other. It
also means that no copy cycle is needed to convert between representations, which
compensates some of the higher complexity required for parsing a reference value.

Furthermore, the complexity of the compression stream (section 3.1.1) used to actually
compress the symbols describing the tree must be taken into account, which is in most
practical cases considerably higher than that of parsing the tree nodes (see the timings for
decompressing the lena image in figure 4.2 on page 116).

Now let’s examine how many entries N; the node pool must be able to hold. Because
only the inner nodes can have children, there should only be memory allocated for these
nodes in the node pool, which raises the question of how to model the references to the
leaf nodes on the penultimate level of the tree: since no memory is allocated for the leaf
nodes, references to leaf nodes must have a different type than references to inner nodes.
Because the leaf nodes contain no references to children but only to a value, we can simply
replace the references to child nodes on the penultimate level with references to the child
nodes’ values; this is possible because all references are self-describing integers. The next
question is how many inner nodes there are. As we already established, the D-dimensional
wavelet transformation partitions the data it is applied to into 22 bands of (approximately)
the same size?>. In other words, each band has about 2% times the size of the data being
transformed. For the following considerations regarding the number of inner nodes, we will
assume that the wavelet transformation produced 2” new bands with exactly the same size.
The inner nodes are all within the ¢” band on the finest level, i.e. there are N; = 2% inner
nodes, the number of inner nodes decreases exponentially with the number of dimensions.
At the same time the node size 2P + 1 increases exponentially; both effects cancel each
other out, leading to total memory requirements (in integers) of

2D +1
2D
25A11 2P new bands have exactly the same size if the spatial extent of the currently processed band is

divisible by 2 in all dimensions; otherwise the sizes vary by 1 in all dimensions where this doesn’t apply.

mem = N;(2P - 1) = N (3.47)

node

3.4. QUANTIZATION 83

for the node pool. Note that equation (3.47) converges monotonously decreasing towards
N for D — oo and reaches a maximum of 3N for the 1D case (the 0D case for point
data is a concept alien to RasDaMan and meaningless regarding wavelets and the EZT
anyway). In other words: given a constant number of wavelet coefficients, the size of
the tree structure decreases as the number of dimensions increases, which is a property
(almost) too good to hope for.

This tree structure provides no directly available information about a coefficient’s po-
sition any more?®, nor links from child to parent nodes. Neither is required for coding
with this tree, however, so there is no point in adding them to the structure except for
debugging purposes.

Another important issue are boundary effects for data cubes with edges which aren’t
powers of 2 long. The wavelet transformation partitions data of length 2% 4+ 1 into 2¥~1 41
(= PIET“D average coefficients and 2¢71 (= L@J) detail coefficients; this can lead to
coefficients unreachable by the zerotree structure in its current form, as will be shown in
the following example.

Consider 1D data with length 18. This will be split into 9:9 coeflicients (with the
number of average coefficients before the colon and the number of detail coefficients after
it). Recursively applying this to the average coefficients results in partitions 5:4 and then
3:2 where we can stop in this example. This gives us a 1D partition into bands 3,2,4,9
coefficients long, which can also be seen for the 2D case in figure 3.17. Let’s focus on the
two finest bands at scale level 2 and 3 with lengths 4 and 9 respectively: the parent-child
node relationship in equation (3.44) says that coefficient 0 in band 2 has coefficients 0 and
1 in band 3 as children, up to coefficient 3 in band 2, whose children are coefficients 6 and
7 in band 3; the last of the 9 coefficients in band 3 is unreachable, however, which has to
be remedied to make the EZT work for arbitrary quality coding.

First up, we’ll have to examine whether the area covered by the average coefficients
on the coarsest level always completely covers the area of the original data according to
equation (3.44). Using equation (3.34), we can calculate which area in the original data
the average coefficients after [coarsening steps correspond to, using |a!| for the width of
the band containing these average coefficients. Because according to equation (3.44) the
width of the original data covered by the coefficients doubles with each coarser scale level,
the width covered by the |a!| coefficients after [coarsening steps is 2'|a[, i.e.

l

11 ! i i—l 1 i i ! 13
2'a’| = 2 22 Ji + ZZ]Z 222]2“"2 7231
1=l 1=0 i=l =0
ko -1 k-
2 D 25+ 3 2= 25i=1d (3.48)
1=l 1=0 =0

26 Apart from its value offset, which can be converted back into a multidimensional position vector using
equation (2.2), but that is a rather expensive operation.

84 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

3 2 4 9

Figure 3.17: Zerotree boundary effects
This figure illustrates the problems with the EZT structure in case of data whose spatial
extent is not a power of 2. It shows an array 18 X 18 coefficients large and the band partition
caused by the multiresolution wavelet analysis. If no special steps are taken, the hatched
area is unreachable from the root band to the top left.

because
1l 0 jo=--=7_1=0
1t o - Jo Ji—1
2 {l ;j Z-‘ { 2l otherwise

-1 =1
and 2! > 3" 20 > 3" 215, That means that the original data is always covered completely
i=0 i=0

by the average coefficients on any level, which naturally includes the coarsest one. The
problem of unreachable nodes can therefore only be caused by some of the intermediate
detail bands like in the example. A possible solution is therefore to virtually extend these
detail bands so that the coarsest one is just as wide as the coarsest average band and each
finer detail band is exactly twice as wide as its nearest coarser neighbour. Nodes which
fall outside the actual limits of the band are purely virtual, have no node value and are
merely present to allow linking to coefficients on finer levels; a node with no value can
also be encoded easily with the self-describing integers introduced above by simply using
noChild as the value reference. In the example, the bands would therefore have virtual
widths 3, 3,6, 12 as opposed to the actual widths 3,2,4,9, and a possible route from the
root of this virtual band partition to the last coefficient on the finest level (which used

3.4. QUANTIZATION 85

to be unreachable) is (cl,2) —{(d1,2)| — |(d2,4) |— (d3,8), using the notation (band-
label, coefficient-number) and framing purely virtual nodes. This is the approach currently
implemented; it requires more memory due to the virtual band extensions, but allows
efficient algorithms without too many exceptions by ensuring the tree has constant depth
everywhere.

Shapiro’s EZT publication also suggested using a list for the coordinates of nodes that
haven’t been encoded as significant yet and a list for the values of nodes that have been
encoded as significant already. Because the additional memory requirements for these
lists can become quite large (and one would even scale with the dimensionality because it
contains coordinates), a different implementation was chosen using a binary array (encoding
map) with the same size as the coefficient array, which signifies for each coefficient whether
it has already been encoded as significant in a dominant pass or not. This requires one
additional bit per coefficient, regardless of dimensionality, which is very little considering
the zerotree algorithm operates on arrays of 64 bit floating point values. Instead of the list
of node values already encoded, the coefficient array itself can be used and updated with
each encoded node; this modifies the coefficient array, but that isn’t required by any part
of the compression engine any more once encoding has finished. While this approach slows
down the subordinate pass for low quality coding where the number of encoded nodes is
small compared to the number of coefficients (and therefore the iteration over the encoding
map takes longer than the iteration over the explicit subordinate list), it performs well for
higher quality and uses considerably less memory especially in the latter case. By casting
the bit array to a byte array and iterating over that in the subordinate pass, one can even
get a simple hierarchical index to encoded nodes at no extra cost by testing each byte
against 0 and only checking the individual bits if the byte differs from 0, which can speed
up the search for already encoded nodes by up to a factor of 8. Additional hierarchical
levels could be added, but that would also increase the cost of marking a node as encoded,
and because the complexity of the compression stream is still considerably higher than
that of the subordinate pass, there is currently no urgent need for such an extension.

3.4.3.6 Aggregation for More Efficient Encoding

An important aspect of zerotree coding is the complexity of encoding a node’s value.
Determining whether a node is a zerotree root or an isolated insignificant node requires
checking all the node’s transitive children. If no information about a node’s children was
aggregated, the encoding algorithm would have to spend most of its time on this check.
There is tremendous room for optimization especially in this respect, because in case the
node currently processed turns out not to be a zerotree root, its children have to be
processed and their transitive children — the current node’s transitive grandchildren, which
may already have been checked — have to be checked for significance again. An obvious
choice for aggregation is the maximum absolute value of each inner node’s transitive child
nodes. That way, each node can be encoded in constant time by using its aggregated value
to distinguish between zerotree root and isolated zero.

There is one potential problem, namely that encoding a node can cause aggregated

86 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

values above it to become inconsistent, i.e. when the node currently processed has the
largest absolute value of all its parent’s transitive children. Due to the encoding order this
doesn’t matter, however: the aggregated values are only used if the currently processed
node is insignificant to determine whether it is an isolated insignificant node or a zerotree
root. In the second case, its child nodes don’t have to be processed, so the aggregated
values remain unchanged and therefore the subtree remains consistent. Otherwise, the
child nodes are encoded, but the aggregated value at the currently processed node is not
needed any more, because that node was already encoded before its children were processed,
nor is it needed above the current position because the same argument applies to all nodes
between the root and the current position as well. Note also that this is true regardless
of whether depth-first or breadth-first recursion is used. In other words, the aggregated
values don’t have to be updated every time a node in the subtree is encoded but only before
a new dominant pass is started, i.e. at most once for each threshold value — if no nodes
in a subtree were encoded in the previous pass, no update of aggregated values within the
subtree is necessary, of course. If this was not the case, aggregation would cause increasing
overhead the closer the currently processed node is to the leaf nodes due to the length of
the aggregation path (directed towards the root). As it stands, the aggregation overhead
is relatively small; an analysis of its benefits based on the number of nodes that have to
be visited follows.

Assuming a tree with height L, dimensionality D and valid child nodes everywhere, we
first calculate the total number of nodes in a subtree with a coarsest level coefficient in
the root node. Due to the fact that each node has 2P children (again assuming the same
number of child nodes for the root nodes for simplicity), the number of nodes at depth
[+1 in the tree is 2 times the number of nodes at depth I, and since there is one node at
the root of the tree, the total number of nodes N is

21D 1

ﬁ. (3.49)

L-1
N=> 2"=
=0

Now let’s consider the worst case when encoding a subtree: all inner nodes are in-

significant, only the leaf nodes are not. This means that for each inner node the encoding

algorithm has to check all children to determine whether the node is zerotree root or iso-

lated zero, and as all inner nodes are insignificant, this continues up to the leaf nodes.

That means that starting from the root node at depth 0, all nodes below that depth have

to be visited, then the same for depth 1,2, The number N' of nodes from depth [to L

can be calculated as the number of nodes in the entire tree minus the number of nodes in
depths 0 to [— 1:

2ZD_1 2LD_2lD
90 1 2D _ |

-1
N'=N-Y2P=N- (3.50)
=0
The worst case situation described above means that first all child nodes from depth 1
downwards have to be visited, then all those from depth 2 downwards etc., up to depth L,
i.e. the total number V' of visited nodes is

3.4. QUANTIZATION 87

L l L 2LD . 2lD 2LD 1 L D
vV = N = = L— 2
; ; 2D _ 1 2D _ 1 2D—1l§
2LD 2D L-1 2LD 2LD _
= L — > ol = L—-2P
2D 1 2D —1 & 2D 1 (2P —1)2
2D LD _ 1
= PACEDLEY S — 3.51
2D 1 (2D 1 (3.51)

Now let’s set V' into relation with the number of nodes in the subtree to get the
complexity ratio of the naive approach compared to preaggregation, where each tree node
only has to be visited once during encoding (not counting aggregation, because that may
not be necessary before each pass):

2]‘_23 (Q(L—l)DL _ 2”’_71)

K . 1 2D
- 2LD 1
N 2D 1
D LD
_ 2 (ow-mpy 271
2LD _] 20 — 1
oLD oD _ 2(1—L)D
= - (r-==—= "). 52
2LD—1< 20 — 1) (3:52)

For L. — oo this ratio converges towards L, because % — 1 and QD’Z%(%L)D —
2?,—: < L. In other words, if preaggregated values are used for all inner nodes, only about
%th the number of nodes in the current subtree have to be visited in the best case. In the
worst case, all nodes are significant and the preaggregated values are not used. This means
that all nodes in the current subtree are visited once during preaggregation and once during
encoding, thereby losing efficiency compared to the naive approach without aggregation.
However, as can be seen by the ztreeroot symbol, the EZT is apparently optimized for
predominantly insignificant nodes. Therefore, as a consequence of preaggregation, the
performance improvement will outweigh the overhead penalty at least in those situations
where the EZT achieves good compression (which is typically the case for smooth data
where wavelets are a good model).

3.4.3.7 Encoding Variants and Alphabets

I will continue this section on the Generalized Zerotree with some comments on coding
variants and tree alphabets. The two-pass approach chosen in the original EZT publica-
tion is not the only conceivable way to encode coefficients in a zerotree structure, which
can also be seen by the introduction of different alphabets, e.g. in [10]. The currently
implemented zerotree engine already supports two different coding methods based on the
zerotree structure and an arbitrary number can be added under the same framework by

88 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

simply deriving new classes with specific encode () and decode() methods. The coding
variants currently available are

band1: this is a straightforward one-pass coder, i.e. there is only a dominant pass and no
distinction between nodes that have or have not been encoded yet. Significant nodes
are encoded with the alphabet of the dominant pass, and if they were significant
their absolute values are reduced by the current threshold value. Subsequent passes
operate on all nodes and do not ignore nodes that have already been encoded as
significant in a previous (dominant) pass.

band2: this is the original two-pass approach as published by Shapiro [49] and already
described in section 3.4.3.2. Using different compression streams for dominant and
subordinate pass doesn’t integrate well with the current architecture, however, so
everything is written to one stream using a six-symbol alphabet (the regular four
symbols for the dominant pass plus two additional symbols for the subordinate pass).

Both variants do the simpler depth-first recursion, which should also perform better
because it orders the nodes by the strength of their correlation as implied by the EZT
parent-child node linkage. In order to support both coding types, the aggregation algorithm
has to work differently: for band1 it has to use all node values, regardless of whether the
nodes have already been encoded as significant or not, whereas for band2 it must assume a
value of 0 for all nodes that have already been encoded as significant in a previous dominant
pass, because these nodes have to be ignored in future dominant passes and are therefore
always seen as insignificant. Neither approach universally performs better, which is the
best justification for having both implemented. Experimental results comparing both will
follow in section 4.3.2.

3.4.3.8 Termination Criteria for Encoding

Zerotree coding successively refines the approximated data, so the higher the number of
iterations, the closer the reconstructed data is to the original, and the larger the number
of symbols needed to describe the data. Termination criteria for the encoder must allow
the user to define a tradeoff between the number of symbols used to describe the data
and the approximation quality, similar to the well-known quality level used in e.g. JPEG
encoding. There are several termination criteria available for the Generalized Zerotree,
which are mostly based on distortion measures defined in section 3.4, namely

SNR coding: terminate encoding as soon as the SNR of the wavelet coefficients is higher
than a threshold SNR the user has to specify via a compression parameter;

PSNR coding: like SNR coding, but using the peak signal-to-noise ratio instead;

Residual coding: terminate encoding as soon as the maximum absolute difference be-
tween the actual wavelet coefficients and their current approximation falls below a
threshold residual € (per cell) the user has to specify via a compression parameter.

3.5. PREDICTORS 89

These termination criteria apply to the wavelet coefficients themselves, not the recon-
structed data where distortion can differ considerably (see section 3.4.1). All termination
criteria can be evaluated efficiently during encoding by updating precalculated values each
time a coefficient is refined. For SNR and PSNR coding, the (peak) energy is constant, but
the sum of squared errors it is divided by has to be updated every time a node is refined.
To this end, the sum of squared errors is initialized to the total energy of the data (i.e.
initially SNR = 1), because the initial approximation of all coefficients is zero, and every
time a coefficient v; is refined from an old approximation v} to a new one v/, the sum of
squared errors is updated by (v) —v;)? — (v; — v;)?, i.e. it is not necessary to fully calculate
equations (3.35) or (3.36) every time the termination criterion needs to be checked, but
it can be done in constant time on each update. For residual coding, it suffices to check
the current coding threshold 7' rather than having to iterate over all nodes to find the
maximum value, because by definition at any time during coding all absolute values in the
tree are smaller than 27". Because of this, there is very little overhead required to check
any of these termination criteria, so tests can be made frequently, which means that for
instance SNR and PSNR values can usually be met quite closely without excessive cost for
checking the termination condition.

3.5 Predictors

Predictors belong to the model layer of a compression engine, because they transform the
data according to a model into an equivalent representation promising better compression
rates, but do not perform any compression themselves. As the name implies, a predictor
expresses a cell value relative to an approximated (=predicted) value. The approximate
value of any cell can be calculated by both encoder and decoder from the cell values already
processed (prediction context), and therefore doesn’t have to be stored. Consequently,
only the difference of the actual cell value from the predicted value requires any storage.
Provided the predictor’s model matches the data well, most of the differences will be zero
or at least concentrated around zero, which can improve compression considerably. On
the other hand, if the model doesn’t match the data, the differences will be large and may
even compress worse than the original cell values. Because MDD represent a large variety
of data types which don’t follow a common data model?’, it is necessary to have a large
number of predictor models available to be able to choose the best one for each MDD
type. Predictors can be classified into two major kinds, interchannel (section 3.5.1) and
intrachannel (section 3.5.2) predictors, which are orthogonal concepts and can therefore
be combined arbitrarily. Not all predictors fall in these two categories, but those normally
used in the compression context do. The names are based on the definition of a channel
as all data belonging to the same base type within an MDD, so intrachannel predictors
operate within one channel, whereas interchannel predictors operate across channels. Both
intrachannel and interchannel predictors derive from a common abstract base class predictor

2Te.g. volume data, which is typically smooth (small differences between neighbouring cell values), in
contrast to abstract OLAP data which is rarely smooth (large differences between neighbouring cell values).

90 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

and both use neighbouring cell values for prediction, where the neighbourhood is either
spatial (intrachannel) or across channels within each cell (interchannel); an overview of
the predictor class hierarchy can be seen in figure 3.18. The different predictor types will
be covered in the next two sections, followed by details on how predictors were integrated
into the MDD compression engine and problems to take into consideration when using
predictors in combination with lossy compression.

predictor

+get _ki nd()
+encode()
+decode()
+met a_read()
+nmeta wite()

T
| |

predinter predintra

+get _Kki nd()
+met a_read()
+meta_wite()

+get _ki nd()
+met a_read()
+meta_write()

pinterdelta pintrahyper

+encode() +encode()

+decode() +decode()
pinterscale pintraneighbour
+encode() +encode()
+decode() +decode()

pintraweighted

+encode()
+decode()

Figure 3.18: The predictor class hierarchy

There have to be some comments on the effect of calculating differences between integer
values, because the range of the difference value is twice the range of the original values:
for example when using 8 bit signed values 127 and -128, their difference is 127 — (—128) =
255, which can only be represented as a 9 bit signed value, not an 8 bit one. But the
predictors were designed to use the same data types for input and output, because this
allows adding them as optional functionality at a very fundamental level in the architecture
without having to make subsequent compression stages aware of the presence of predictors,
since the data structure presented to them is the same with or without a predictor run.
Fortunately, modulo effects cancel each other out, just like with Haar wavelets (see section
3.3.4.1), because when only the B least significant bits are of concern, aliasing errors of the
difference values do not influence the B least significant bits of the result, since in case of
an overflow the value appears shifted by +2% and (£27)mod 2% = 0. For instance in the

3.5. PREDICTORS 91

above example, the value 255 would appear as —1 in 8 bit signed integer representation
and (127 — (—1)) mod 256 = 128 mod 256 = —128 mod 256 = (127 — 255) mod 256. It is
important to note that due to this, the sign bit of the difference value becomes meaningless,
i.e. a negative difference value does not imply that the first value is smaller than the second
one (see example). This effect causes considerable problems when using predictors in lossy
compression, which will be covered in more depth in section 3.5.4.

Note that the current system does not allow changing the predictor type during the
compression of one tile, so it isn’t possible to switch between predictors for different chan-
nels. This has mostly to do with the way predictors were added to the compression engine,
more about which will follow in section 3.5.3.

Predictors are sometimes also referred to as filters (e.g. in the context of the PNG format
[41]), but that term will not be used in this work to avoid confusion with the wavelet filters
covered earlier. Another term for compression with specific predictors commonly used in
literature is delta compression, e.g. [22]; in order to make a clear distinction between the
generation of the deltas and the compression of these deltas, the term predictor is used
synonymously for the delta generator.

3.5.1 Interchannel Predictors

Interchannel predictors approximate the value of a channel at a given position from the
values of the other channels at the same position. This type of predictor can improve
compression considerably if the channels are correlated. A related application is the RGB
— YUV transformation used in imaging [40]

Y 0.299 0.587 0.114 R
U | = —0.168736 —0.331264 0.5 G (3.53)
V 0.5 —0.418688 —0.081312 B

and its corresponding inverse operation. In YUV space, colours are modelled as overall
brightness information Y (luminance) and two colour differences U,V (chrominance); the
effects are that

e channels are correlated via their luminance, which typically concentrates most of the
energy. Y essentially acts as the dominant predictor value (and green is the dominant
contributor to the luminance);

e because the human eye is much less receptive to colour changes than to brightness
changes, chrominance can be encoded with less precision than luminance without a
noticeable impact on image quality.

Similar effects can be achieved with other data types as well, not just images. For
instance temperature and pressure in a fluid flow simulation are often correlated, so there
are also potential compression gains from using prediction for more generic MDD than just
raster images.

92 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Interchannel predictors provide a framework for correlating channels in a way similar
to the above example. However, transformations like RGB < YUYV require transformation
matrices in IR" "¢ (n, = number of channels) for transformation and inverse transforma-
tion, and the resulting data types are real numbers rather than the original data types,
which makes the addition of optional prediction to the compression engine complicated
(because the data structure would be different if predictors were used) and can introduce
loss due to numeric errors. In addition, specifying such a transformation matrix manu-
ally is complicated for the user, especially since the matrix must also have an inverse to
allow reconstructing the original data in inverse prediction. A specialized RGB < YUV
transformation is recommended for the future work section, but in this thesis the focus
was on generic solutions. Therefore, the currently implemented system uses the simpler
approach of user-defined channel correlations where each channel can be predicted by an-
other channel (in contrast to a set of other channels) and the predicted channel’s value is
expressed as a predictor function f,(v1, v2) over both channels’ values at the same position.
In the simplest case, this is just the difference (f,(vi,v2) = v1 — v3), which corresponds to
a transformation matrix (p; ;) with p;; = 1 and p; ; = —1 if channel j predicts channel i,
0 otherwise. This matrix can be represented by n. numbers which specify the predicting
channel for each channel (with a special number for disabling prediction for a channel),
and the error of applying the transformation is the machine precision, because the ma-
trix coefficients are integers and at most one subtraction is performed per value (both
things are true for the inverse transformation matrix as well, but with additions instead of
subtractions). Predictor functions can also be more complex, however (see below). As a
further restriction, only channels which have the same base type may be correlated, but be-
cause a correlation of channels which do not even have the same base type is very unlikely,
this should not introduce complications in practical terms. Note that adding more com-
plex transformations under the same framework is a trivial extension, i.e. the restrictions
mentioned above are in the current implementation only rather than the design.

Because the deltas overwrite the predicted channel’s values, the current interchannel
predictors have to translate the channel correlation information into encoding/decoding
channel orders. During encoding, channels must be processed in an order that ensures
that if channel 7 is predicted by channel j, then ¢ comes before j for all 7, 7; so if in an
RGB image red is predicted by green and blue by red, then the order must be blue, red,
green. During decoding, on the other hand, that order must be reversed, i.e. if a channel
1 is predicted by a channel j, then j comes before i, and using the same RGB example
the order must be green, red, blue. Channel mapping and ordering is done in predinter
scope, whereas derived classes provide the actual prediction codecs for all atomic base
types. Currently available interchannel predictors are

pinterdelta: f,(vi,v2) = vy — vq, the predicted channel’s values are stored as the dif-
ferences to the predicting channel’s values. This type of prediction is most efficient
when the values of both channels cover a similar range, such as the colours in an
RGB image and in contrast to the case where one channel’s values are multiples of
another channel’s values. pinterdelta is lossless for integer types and can introduce

3.5. PREDICTORS 93

an error with a magnitude of the machine precision for floating point types.

pinterscale: f,(v1,v2) = (v; —m)s — s, the predicted channel’s values are first translated
and scaled such that they cover the same range as the predicting channel’s values
(v] = (v; —m)s) and then stored as differences to the predicting channel’s values
(= v} —vy). With the extreme values v1 max, V1 mins V2,max; V2.min fOr both channels and
the boundary conditions f,(v1mins V2.min) = fp(V1,maxs V2.max) = 0 we get

V1,minV2 max — V1,max¥2,min V2 max — U2 min
m = and s = —

V2,max — U2,min VU1,max — V1,min

both of which are stored as predictor meta data for the inverse operation during
decompression. This type of prediction is intended for channels which cover differ-
ent ranges but are nonetheless correlated, for instance pressure and temperature in
simulation data whose numeric ranges depend on the units used, but where typically
an increase in pressure implies an increase in temperature. pinterscale is poten-
tially lossy for all types due to floating point operations in the inverse prediction
[y (fp(v1,02),02) = L(fp(v1,v2) + v2) + m; because these floating point operations
are done in double precision, there is usually only loss for MDD over the double type,
however.

While these predictors can’t be expected to perform equally well as specialized image
channel predictors due to their generality, they can be applied to far more generic data
than RGB images, e.g. multichannel satellite image data as described in [57], for example.

3.5.2 Intrachannel Predictors

Intrachannel predictors approximate the values of a channel from the values of neighbouring
cells in the same channel, which typically performs well if the data is smooth. That means
intrachannel predictors exploit similar data properties as wavelet transformations or DCT
do, but at a simpler level. In contrast to these transformations, intrachannel prediction
is typically lossless. All intrachannel predictors in the compression engine derive from a
common parent class predintra which manages information about which channels to use
prediction on (saved as meta data for the decoder), whereas the actual prediction codecs
are provided by derived classes. Naturally, there is a huge number of potential algorithms
for intrachannel prediction, three of which have been implemented for evaluation and will
be described below. Note that because the predictors overwrite the cell values with the
differences to their predicted values, the order in which cells are iterated over during
decoding must be the inverse order that was used during encoding for all intrachannel
predictor types.

pintrahyper: this variant uses (orthogonal) hyperplanes for prediction, i.e. it slices
through the MDD along the hyperplane normal and expresses the values in the cur-
rently processed hyperplane as differences to the nearest unprocessed hyperplane. An

94

CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

orthogonal hyperplane is described by its normal dimension and the coordinate zj,
where the hyperplane intersects this dimension’s axis. The current implementation
allows the user to specify the number of the normal dimension in case the cells are
correlated stronger along this direction (such as the temporal dimension in a movie);
this dimension number is stored as meta data for the decoder.

In the popular case of 2D images, hyperplanes are lines or columns of the image and
hyperplane predictors can be found in e.g. the delta-line raster data format of the
printer language PCL [38], which performs very well for rasterized text and similarily
regular data, or some of the filters of the PNG image format [41] (filter types SUB for
horizontal and UP for vertical prediction direction).

pintraneighbour: this predictor uses the arithmetic average of the values of neighbouring

cells in all directions as approximation for a cell value; the cells used for prediction
are limited to those whose coordinates differ by at most 1 in all dimensions (this is a
cube containing 37 — 1 cells) and which have known values for the decoder to allow
reconstructing the original (which eliminates some of these 32 — 1 cells, as explained
below). The current implementation iterates back-to-front in all dimensions during
encoding, so it has to iterate front-to-back in all dimensions during decoding. The
order in which dimensions are iterated over is important as well to determine the
maximum set of neighbouring cells with values known by the decoder: the default
iteration order is last dimension first and first dimension last, which means that for
example for a cell at (z1,...,xp), all cells at (21— 1,294 22, ...,2p+ zp) have values
known to the decoder (where z; € {—1,0,1}). Cells with coordinates (z1 + 1,...)
don’t qualify at all, and for cells with coordinates (z1,...) the set of neighbouring
cells with known values are at (21,29 — 1,23+ 2%, ..., xp+2)p) as well as (21, g, T3 —
Lxy + 2,...,2p + 2},) and so forth up to the final cell at (z1,...,zp_1,2p — 1).
Formally, the coordinates of neighbouring cells with values known by the decoder are
in the set Sy(z1,...,2p) = {(x1+21,...,ap+2p) 1 21 =+ =21 =0, 2z =
-1, zit1,...,2p € {—1,0,1}}. These sets are visualized for the 2D and 3D cases
in figure 3.19.

Similar predictors can frequently be found in image compression, such as the AVERAGE
and PAETH filters in the PNG standard [41], or to some extent the Q-coder in the
lossless JBIG format [30] (which has a bigger prediction context, however). The
pintraneighbour predictor uses the same weight for all neighbouring cell values irre-
spective of their relative position by calculating the arithmetic average value and
rounding that to the nearest value that can be represented by the base type of the
currently processed channel; because this rounded average, which is used as predictor
value, is the same in encoder and decoder, the predictor is lossless (at least for integer
types) even though the average value is not.

pintraweighted: this predictor works exactly like pintraneighbour, but uses different

weights depending on the neighbouring cells’ relative positions. The policy used
is that the weight of a neighbouring cell is initialized with 1 and multiplied by a

3.5. PREDICTORS 95

weightFactor for every dimension where the coordinate differs from that of the cur-
rently predicted cell; weightFactor is % by default but can be changed by the user
via parameters. With this default value, the weight would be % for the cell at relative
position (0, —1,0), i for the cell at relative position (—1,0,1) and % for the cell at
relative position (—1,1,1). This system ensures that diagonal neighbours have less
influence on the predicted value than direct neighbours. With these weights w; and
the neighbouring cell values v;, the predicted value is then calculated as the weighted
average > v;w;/ > w;. Like in the pinterweighted predictor, calculating this average

(2 (2
involves loss, but because the result is rounded to the same value by both encoder and
decoder when determining the difference value, the predictor as a whole is lossless
(for integer types).

w
—

Figure 3.19: Neighbouring cells for some intrachannel predictors
This figure shows the maximum sets of neighbouring cells with a maximum distance of 1 in
all dimensions and values known to the decoder for pintraneighbour and predintraweighted.
To the left, axis orientation and iteration order of the decoder are shown, i.e. first horizontal
(left to right), then vertical (bottom to top), followed by the normal to the paper (back to
front) in the 8D case. In the center, the neighbourhood is shown for the 2D case and to
the right for the 3D case; in both cases the currently processed cell is visualized hatched.

3.5.3 Predictors in the Compression Engine

As shown in figure 3.4 on page 37, predictors were added to the compression engine at a
very high level in the class hierarchy within the first two child classes of the tilecompression
root class. The reason for this decision was to make prediction uniformly available to all
compression types without requiring special support by derived classes (albeit special steps
must be taken for lossy compression, see section 3.5.4). Because interchannel prediction
is a concept not covered at all by other components of the engine, the compression class
tilecompinter with interchannel prediction comes first in the hierarchy and is shared by
all compression types. The situation is somewhat different for intrachannel prediction,
because wavelet transformations cover similar ground and combining both will therefore
typically not improve compression, hence the wavelet class hierarchy derives directly from
tilecompinter rather than tilecompredict, which contains both predictor types.

96 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

The current implementation only supports one predictor of each type per tile, so chang-
ing the predictor between channels is not an option. It is easily possible to extend tilecomp-
inter and tilecompredict to support an arbitrary number of predictors, which would allow
using different predictors for channels which are not correlated, because in this case each
predictor can process all channels it controls in one pass, as none of these channels depends
on ones controlled by other predictors. What can not be done with the mere addition of
predictors to the tilecompression classes are channel correlations like 1—2, 2—3 and 3—4
where channels 1 and 3 are controlled by predictor P, and channels 2 and 4 are controlled
by predictor P, because neither predictor can process all its channels independently. This
sort of extension is more complicated and would require extending the predictors them-
selves. However, it seems unlikely that channels using different prediction strategies can
be correlated, therefore this extension is directed to the future work section.

Predictors were added such that for lossless compression, they preprocess the data at
the beginning of the compress() method, with interchannel prediction coming first and
intrachannel prediction (if applicable) afterwards. The processed data (which has the
same structure as the original data) is then passed to the compression object used via
the virtual do_compress() method, which performs the actual compression without being
aware of whether predictors were used or not. Predictor types and their meta data are
stored along with the other modules’ meta data in the compressed tile. For decompression,
this process is reversed, i.e. first the predictor types and meta data are extracted from the
compressed tile, then the data is decompressed by the compression object used with the
do_decompress () method, then inverse intrachannel prediction (if applicable) followed by
inverse interchannel prediction is applied, which results in the reconstruction of the original
data in the lossless case. For lossy compression the use of predictors is more complicated
and will be covered in the next section.

3.5.4 Predictors and Lossy Compression

Because the only lossy compression technique currently available is the wavelet engine, this
section will concentrate on wavelets and prediction, although similar effects can appear in
other lossy techniques (e.g. DCT). The main problem concerning the use of predictors in
lossy compression is overflows for integer types when decoding: after the inverse wavelet
transformation was applied, the values in the resulting floating point array don’t necessarily
fit within the range of the (integer) base type of the data due to lossy coding (see the
quantizing wavelets in section 3.3.4.2), therefore the values are restricted to the range
of the base type when this floating point array is converted back into an array over the
actual base type to avoid aliasing errors. If predictors were used at the same point in the
compression engine for lossless and lossy compression techniques, the following effect could
occur for integer types:

A large value v; is replaced by its difference 6 = v; —p; to a predicted value p; during pre-
diction; the resulting data is then converted to a floating point array, wavelet-transformed
and compressed with loss. During decoding, the data is first decompressed into a floating
point array of wavelet coefficients, which is inverse-transformed into (an approximation of)

3.5. PREDICTORS 97

the original data in floating point representation and then converted into an array over
the corresponding base type (at this stage the value range is restricted to that of the base
type). However, the reconstructed values 0, and p; may differ from the ones used during
encoding due to loss. In particular, it is possible that p; + J; lies within the value range of
the base type used, but the reconstructed value v; = pj + 4} falls outside of it and is aliased
to another value (or the other way around in case of intentional overflows mentioned at the
beginning of this section), e.g. for 8 bit unsigned types v = 255 but v, = 257 which gets
aliased to 1. This kind of overflow can not be trapped, because as mentioned in section
3.5, the restriction of the difference value to the same number of bits as the base type
renders the sign of the difference value meaningless, therefore it can’t be decided whether
an overflow is intentional as in the example at the beginning of this section, or an unwanted
side-effect of the lossy compression. It is therefore not possible to restrict v to the value
range of the base type without maintaining the correct signs of the difference values in
some way. Consider the example at the beginning of section 3.5, where a difference of
255 appeared as -1 in 8 bit signed representation, which was then subtracted from 127,
resulting in 128, which appeared as -128 in 8 bit signed representation: if the difference
value -1 was changed to 0 due to loss, the resulting error would obviously be unacceptably
large.

The sign bits could be stored in a separate array; this doesn’t integrate well with the
compression engine and makes reconstructing the correctly signed values somewhat com-
plicated. The alternative is to activate predictors at another point in the engine, within
the compression class itself rather than outside of it. In the wavelet engine, the best place
to do it is between wavelet transformation and the conversion base type array < floating
point array (see section 3.3.4.2). Because in this case the prediction is applied to float-
ing point values, no overflows and aliasing effects can occur®® and the differences always
have the correct sign; the differences may not be exact due to limited precision of the
mantissa, but this effect is usually negligible compared to the compression-induced loss.
The disadvantages of this approach are that it requires explicit support for predictors in
all lossy compression classes as well as higher memory requirements, because the floating
point arrays of channels predicting others have to be kept in memory until all channels
predicted by them have been processed. Despite these problems, this is the most elegant
approach, although it has to sacrifice the independence of the compression algorithms from
the predictors that exists in the lossless case. Whether a compression algorithm is lossy
or lossless is determined by a virtual function call to the tilecompression object; if it’s loss-
less, predictors are handled in tilecompinter and tilecompredict scope and the compression
algorithm can ignore prediction entirely, otherwise prediction has to be handled by the
compression object internally.

28Bar pathological cases near the extreme values of the floating point types, which have little relevance
in real life applications.

98 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

3.6 Dynamic Parameter System

Many compression algorithms have to be configured by the user via parameters, like for
instance the compression level in ZLib, which is an integer value representing the tradeoff
of time spent vs. compression rate?’; other examples are quality settings like in JPEG or
the signal-to-noise ratios to use for each channel in wavelet compression. These examples
already illustrate the diversity of parameter types found in a complex compression engine,
which makes it unfeasible to use fixed parameter types. For maximum flexibility, a dynamic
parameter system is needed that is both easy to use and powerful enough to cover the
requirements of each and every module within the compression engine®.

The obvious choice regarding the flexibility required for the parameters is to encode
them as strings, because any parameter type can be converted to some string representation
and back. Since configuring all modules involved in the compression of an MDD calls for
multiple parameters, there must be a way to identify each parameter, for instance via a
keyword; therefore the parameter string format chosen is the following:

param_string = param.def [, param def] *
param_def = Kkeyword = value
value = integer | double | substring | "string"
keyword = alphanumeric identifier name
integer = string representation of integer value
double = string representation of floating point value
substring = any string not containing comma or whitespace
string = any string

Values can currently have three different types: integer, floating point and string. Ba-
sically using strings as types and leaving the conversion to the module using the parameter
in question would be sufficient, but because a large number of parameters are integers and
floating point values (see appendix C), pushing the conversion into the parameter parser
is often more convenient. String values can be in two formats: if the value contains white-
space characters or commas, it must be enclosed in double quotes to allow the parser to
tell the difference between the end of the value and the beginning of the next keyword.
Otherwise, the double quotes are redundant and may be omitted.

The parameter system is based on a class parseparams, which realizes the scanning of
parameter strings for relevant parameters. Each module requiring parameters instantiates
an object of this class and registers each parameter it understands with a keyword, a type
descriptor and a reference to the variable used to store the parameter value, which is typi-
cally done in the constructor. Within a class hierarchy, the parseparams object is typically
instantiated at root level and shared by all descendants, which merely have to register
their parameters one by one; for instance the parameters used in an object of the daub4

29Legal values range from 0 to 9; with a level of 0, data is not compressed at all and the larger the value
the harder the algorithm tries to improve the compression rate at the expense of getting slower.

30Use of the dynamic parameter system is not restricted to the compression module, but also extends
to the related conversion module which handles data exchange formats like JPEG.

3.7. TRANSFER COMPRESSION 99

class (see figure 3.4 on page 37) were added to a parseparams object defined in tilecompres-
sion scope on all levels of the class hierarchy, in the constructors of classes tilecompression,
tilecompinter, waveletcomp, qwaveletcomp and daub4. That way, each parseparams object
maintains a list of keywords to scan for, depending on the module owning the object. When
a parameter string is presented to such a module, it simply calls the parseparams object’s
process () method, which scans the parameter string for the registered keywords, extract-
ing the values of keywords that are in its list and ignoring all others. When the call returns,
the parameter variables on all levels of the class hierarchy contain the values found in the
parameter string (or remain unchanged if no new value was given). This system allows
using just one parameter string for all modules and leaving it to the individual modules to
extract those values they consider relevant. For instance, the parameter with the keyword
wavestr contains the name (a string) of the compression stream to use in wavelet compres-
sion, whereas the parameter with the keyword zlevel contains the ZLib compression level
(an integer). Therefore, when the parameter string wavestr=z1ib, zlevel=9 is processed
by a wavelet compression object, it will extract the name of the compression stream, use
that to instantiate a ZLib stream in waveletcomp scope and pass the parameter string on
to this newly created object, which will in turn extract the compression level 9. If the
parameter string is wavestr=rle, zlevel=9, on the other hand, the zlevel parameter
will be ignored entirely because rlestream doesn’t understand it.

The current system operates directly on the parameter strings, which has the disad-
vantage of having to parse the string repeatedly on each call to the process () method?!.
Because the time taken for this call is usually very small compared to compression times,
optimizing the parameter handling will not have much influence on the overall performance
and is therefore assigned to future work. A possible way to speed up parameter processing
is parsing the string once, building a table of all keywords found including a suitable index
on it (e.g. hashing or alphabetic sorting) and subsequently scanning this table rather than
the parameter string itself for parameter definitions.

3.7 Transfer Compression

An important requirement for the compression engine is that it can also be used for transfer
compression, i.e. the compression of data in the client-server communication layer as shown
in figure 3.4 on page 37 to reduce the data volume and consequently the transfer time. To
achieve maximum efficiency and flexibility, this requires the same compression functionality
on client and server, because that way tiles that are already stored in the database in
a compressed format and need no trimming can be sent directly to the client without
requiring decompression followed by compression with a dedicated transfer compression
format, thereby saving substantial time. As this example illustrates, the speedup achievable

31Because normally only one parseparams object is used in a class hierarchy, there is typically no need
for more than one call to its process() method; but in most cases several class hierarchies are involved
in the compression of a tile, for example qwaveletcomp, wavequant, linstream and quantctrl or zerotree for
lossy wavelets, each of which has to call process() once.

100 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

with transfer compression is governed by the following factors:

1. the compression time t. on the sending side and the decompression time t; on the
receiving side (where the sender is not necessarily the server);

2. the compression ratio r achieved by the compression format chosen, defined as the
size of the compressed data divided by the uncompressed size. As a general rule, the
uncompressed data is used in preference if the compressed data is not shorter, which
means we can always assume 0 < r < 1;

3. the bandwidth B of the communication channel, i.e. the time taken to transfer data
over the channel; in this section the unit used will be bytes per second.

Assuming uncompressed data with a length of m bytes, this results in total transfer
times % without transfer compression and t.+ " +t4 with sequential transfer compression,
respectively max(t.,t4) + "5 if compression and decompression can run in parallel; the
abbreviation t.; will be used to mean either ¢. + t; or max(t.,t;) depending on whether

mnr

compression and decompression are running sequentially or in parallel. The term "5 is
the time taken to transfer the compressed data over the communication channel and since
0 <7 < 1 (only use the compressed data if it didn’t expand in size), this is always less than
the transfer time for the uncompressed data; consequently, the overhead for compression
and decompression is the decisive factor when determining the feasibility of using transfer
compression. Total transfer times benefit from transfer compression if Z > tq + % <
teg < (1 —). That means transfer compression can pay off if the compression ratio,
the (de)compression times or the bandwidth are very small; small compression ratio and
(de)compression times are mutually exclusive, because typically compression algorithms
that achieve a substantial compression ratio are very complex and therefore expensive (see
timing measurements in chapter 4), whereas fast and simple compression algorithms can’t
reduce the data size as much. Therefore the best compromise between high (de)compression
overhead and low transfer times vs. low (de)compression overhead and high transfer times
must be found, which means that the ratio of processing power to bandwidth is the decisive
factor for transfer compression, and the larger this ratio, the more transfer compression
speeds up transfer times®?, i.e. provided the bandwidth is small enough compared to the
processing power, even very complex compression algorithms improve total transfer time
(B < %) For instance over 100 MBit/s ethernet, even simple compression algorithms

are unlikely to improve transfer times with processing power typically available today>?;

32The processing power could be measured in MIPS, but because no concrete threshold value for the
power-to-bandwidth ratio is given in this section, any other unit will do. An important observation is that
if a specific compression algorithm improves transfer times for a given reference ratio of processing power
to bandwidth, this is also true for all combinations of these two factors whose ratio is at least as large as
this reference ratio.

33Since the compression engine is tile-based, there is much potential regarding massively parallel archi-
tectures which — by compressing n tiles in parallel — can achieve near linear speedup. This is very important
regarding storage compression of very large MDD, but it usually does not apply to transfer compression,

3.7. TRANSFER COMPRESSION 101

over 10 MBit/s ethernet, simple compression algorithms like RLE can already improve
transfer times considerably, whereas over typical modem connections with about 50 kBit /s,
even very complex compression algorithms like the wavelet-based techniques in section 3.3
can reduce total transfer times. The effects on overall performance of using the available
compression algorithms for transfer compression will follow in the results chapter 4.4.

since in this case both sender and receiver must have similar processing power to avoid blocking. While
a powerful, parallel database server is not unusual, the same can not be said for database clients, which
therefore become the bottleneck.

102 CHAPTER 3. COMPRESSION ENGINE ARCHITECTURE

Chapter 4

Evaluation and Results

In this section, the compression engine’s major components will be tested and compared
when applied to various kinds of MDD with 2-4 dimensions. The test MDD used, some of
their properties and measuring conventions will be introduced in section 4.1. Next comes
detailed analysis of lossless and lossy compression algorithms regarding runtime overheads
and achievable compression rates in sections 4.2 and 4.3, both of which will end with a
small conclusions section analysing the individual tests from a global perspective. This
chapter closes with some measurements for transfer compression in section 4.4.

4.1 Test MDD and Conventions

The test MDD used for compression were chosen to cover a wide range of different types
and data properties; they range from 2—4 dimensions and cover the base types char,
unsigned short, float and RGB (= struct { char red, char green, char blue }).
Each MDD will be given a name which will be used to identify it for the remainder of
this chapter. All test MDD were processed as single tiles to minimize side-effects. The
test MDD whose names end in 7 _small” were scaled to half their size in each dimension to
make them more easily manageable: for instance the full tomogram (eight times the size
of tomo_small) contains about 10 million cells, so for lossy wavelets the coefficient array
alone would consume 80MB due to the change from char to the double base type). Figure
4.1 shows images of all test MDD except for lena, which can be seen in figure 3.5 on page
42.

2D: the 2D MDD are regular raster images; many of the compression techniques used
in the engine originated in image compression, so raster images were chosen as a
reference to compare how these techniques scale to the other MDD with higher di-
mensionality and different base types.
lena512: the standard greyscale Lena image (see figure 3.5) with the base type char
and the spatial domain [0:511,0:511] (262144 bytes);

cnig: a colour satellite image of the spanish coastline with base type RGB and the
spatial domain [0:511,0:511] (786432 bytes);

103

104 CHAPTER 4. EVALUATION AND RESULTS

3D: the 3D MDD are spatial and spatio-temporal data typically used in entertainment,
neuroscience, simulation and high performance computing.

tomo_small: a greyscale tomogram with base type char and the spatial domain
[0:127, 0:127, 0:76] (1261568 bytes). The data is sparse, but contains a
fair amount of noise;

brain_small: a greyscale tomogram with base type unsigned short and the spa-
tial domain [-72:-2,-75:16,-76:-2] (979800 bytes). This MDD represents
a standard brain scan as used by neuroscientists in e.g. the NeuroGenerator
project [43];

movie_small: a short video sequence (i.e. 3D spatio-temporal data) with the base
type RGB and the spatial domain [0:59,0:79,0:59] (864000 bytes). The first
dimension is the temporal axis. It shows a scene from The Jungle Book (©) the
Disney Corporation;

temperature: spatio-temporal data with the base type float and the spatial do-
main [0:119,0:63,0:127] (3932160 bytes). It shows the temperature distri-
bution on a map of the earth over the seasons, where the first dimension is
the temporal axis. The MDD was provided by Deutsches Klimarechenzentrum
(DKRZ);

4D: there is only one 4D MDD available for testing, because there is a very limited supply
of test data with this dimensionality suitable for all compression techniques (bar
synthetically generated ones).

dkrz4d: spatio-temporal data with the base type float and the spatial domain
[0:14,0:31,0:31,0:63] (3932160 bytes). It shows the temperature distribu-
tion in a volume over the seasons, where the second dimension is the temporal
axis. This MDD is also courtesy of DKRZ.

The conventions for all measurements are the following:

relsize (size of compressed data) are given in percent relative to the uncompressed size,
i.e. a relsize of 100 means the compressed data is just as large as the uncompressed
data, and the smaller the size, the better. The relsize is the rate times the size of the
base type in bits times the number of cells in the MDD, in other words it scales pro-
portionally with the rate. If compression algorithms are compared qualitatively, rate
and relsize are equivalent; for quantitative comparisons, relsize is more meaningful in
MDD compression, however. Note that the sizes given include any additional meta
data that may be necessary for decompression;

timings are given in microseconds (us) unless noted otherwise. The abbreviations ¢, and
tq are used for compression and decompression times. All timings were performed on
a Sun Ultra 250 Enterprise Server with 640MB of main memory and two 400MHz
UltraSPARC-II CPUs and are averages of at least 10 consecutive runs;

4.1. TEST MDD AND CONVENTIONS 105

brain_small movie_small

tomo_small temperature dkrz4d

Figure 4.1: The test data sets
This figure shows images of the test MDD wused in this chapter, visualized with rView [19].
brain_small, tomo_small and dkrz4d were visualized with volume rendering, temperature
with 3D texture mapping. dkrz4dd was also projected down to 3D dimensions for the visu-
alization.

module timing (detailed listing of time spent on specific modules) is only done for major
modules contributing to a compression operation, therefore the time given for the
entire operation may be a little higher than the sum of the major components’ time.
To keep the tables compact, the following symbols will be used to abbreviate the
modules involved:

e 7 the entire tilecompression object;
e S the linstream object;

e P the predictor(s), using P, for interchannel and P, for intrachannel predictors
if both were used;

e C the compression core class itself without its helper classes (i.e. the component
managing compression streams, meta data, wavelet transformations etc.); this
is essentially everything not covered by the other modules above.

106 CHAPTER 4. EVALUATION AND RESULTS

throughput (amount of uncompressed data processed per second) is abbreviated by 6.
for compression and 6, for decompression and has the unit kilobytes per second.
This is important for transfer compression, because all compression techniques whose
throughput is below the bandwidth of the transfer medium can’t improve transfer
times, no matter what rates they achieve.

4.2 Lossless Compression

The lossless compression types are RLE, ZLib, SepRLE, SepZLib and HaarWavelet (with
either RLE, ZLib or ArithCoder compression streams). ZLib streams are always run
at maximum compression level for optimum rates (although this increases compression
time). We will first examine the compression rates and the time taken for the compres-
sion/decompression operations and then evaluate the effects of predictors on the compres-
sion of these test MDD. The separating compression streams will only be used on those
MDD over structured based types, because for atomic types they are equivalent to the
non-separating variants. Because lossless compression has few parameters and most of all
no rate-distortion considerations to take into account, there is little point in presenting the
measurements graphically, so tables will be used instead.

4.2.1 Relative Sizes and Timings

4.2.1.1 RLE
RLE lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 105.802 | 100.173 29.8034 45.1894 101.797 100.047 100.155
te T | 38328 78479 117452 60240 105290 173128 172926
C 1453 4112 1876 2196 4466 22737 23060
S | 36645 74108 115311 57790 100528 150054 149520
0. 6679 9786 10489 15884 8014 22180 22206
tg 7 | 16712 15414 28008 11972 34712 32896 30786
C 4 24 22 22 24 22 18
S | 16503 15032 27708 11666 34401 32590 30492
04 15318 49825 43987 79923 24307 116732 124732

Observations: only acceptable results for sparse data (tomo_small, brain_small), with
an average relsize of 83.281. Very fast: all decompression times faster than even 100Mbit
Ethernet. Because the algorithm exploits the base type size, its decompression speed scales
with the base type size for atomic base types (brain_small: 2; temperature, dkrz4d: 4).
Decompression takes noticeably less time than compression with f—d between 2.29 and 5.61.

4.2. LOSSLESS COMPRESSION 107
4.2.1.2 ZLib
ZLib lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 79.4243 | 77.8596 24.6251 37.0645 67.8804 62.0784 71.6091
t. 7T | 182160 | 492185 382313 429512 514109 10850199 5788265
C 1211 3621 1805 2061 3426 14459 16352
S | 180698 | 488297 380253 427213 510423 10835423 5771614
0. 1405 1560 3222 2228 1641 354 663
tqg T | 24361 72741 63105 58921 67030 343957 359046
C 13 17 12 13 14 17 19
S | 24157 72476 62877 58712 66785 343662 358738
04 10509 10558 19523 16239 12588 11164 10695

Observations: achieves compression for all test MDD, but only substantial compression
for sparse data where relsize does not differ dramatically from that achieved by RLE. The
average relsize is 60.077, well below that of RLE. For most test MDD, the throughput
is above 10Mbit Ethernet bandwidth, with the exception of the floating point base types
(temperature, dkrz4d) where it’s well below that for compression. Decompression through-
put is relatively stable between 10 and 20 MB/s for all test MDD, but compression is a lot
slower with i—; ranging from 6.03 to 31.55, where the peaks are at the floating point types.

4.2.1.3 Channel Separation

Channel separation compresses each channel separately rather than interleaved like the
normal (simple) compression objects. Whether this improves compression rates depends
very much on the data.

SepRLE cnig movie_small SepZLib cnig movie_small

relsize 104.324 92.9567 relsize 68.4723 65.3181
te T 216619 212737 te T 664018 597487
C 94752 104516 C 91877 101567
S 119773 106117) 569990 493716

0. 3545 3966 0. 1157 1412
tq T 147790 141016 tq T 157732 168178
C 89080 100425 C 89901 100315

S 57843 40026 S 67066 67431

04 5197 5983 04 4869 5017

Observations: compared to the non-separating compression objects, the core classes C
gain considerable complexity because they have to separate the channels before passing the
data to the compression streams (or the other way around during decompression), which
also lowers throughput. The relsize for SepRLE gets 4% worse for cnig and 8% better for
movie_small compared to RLE, so on average it compresses better than interleaved RLE
compression. SepZLib is better than ZLib in both cases, by almost 10% in the case of cnig
and by about 2% in the case of movie_small.

108 CHAPTER 4. EVALUATION AND RESULTS

4.2.1.4 Haar Wavelet

Because all wavelet types can be combined with arbitrary linstream objects for compression,
this section contains measurements for all compression streams. The abbreviation Haarg
stands for RLE compression, Haar, for ZLib compression and Haar 4 for ArithCoder. 1t
must be noted that Haar wavelets are no longer lossless for floating point types due to the

accumulation of arithmetic errors, typically introducting an SNR around 103,

Haarp lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 103.302 | 101.721 35.9521 52.0418 96.9093 100.125 100.163
te 7T | 131021 | 552084 1019142 347435 750913 1116372 1196337
C 98972 | 459538 858695 265314 603203 924738 989248
S | 29484 85032 136027 69981 123066 157548 164609
0. 1954 1391 1209 2754 1124 3440 3210
tq T | 90031 | 451120 857713 252925 626536 912916 992121
C 78550 | 419289 782121 218038 542159 848627 906681
) 10016 27593 51540 24441 61317 51824 63092
04 2843 1702 1436 3783 1347 4206 3870

Observations: where actual compression is achieved, using an RLFE stream for the com-
pression of Haar wavelet coefficients results in worse compression rates than using the RLE
stream on the untransformed data, with the exception of movie_small where the relsize is
about 5% better. Compression and decompression times are very stable with tc between
1.19 and 1.56, but since the average relsize of 84.316 is higher than that of usmg RLE, the

use of RLE streams for Haar wavelets can be discouraged.

Haary lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 76.062 | 78.1662 30.1502 46.0699 69.7862 58.9853 66.7483
te 7T | 317317 | 1048883 1434041 748286 1427384 12762465 11864787
C | 98919 | 458846 861395 267198 599655 917731 992210
S | 216378 | 584126 548061 468499 804587 11818378 10835894
0. 807 732 859 1279 591 301 324
tq 7 | 113071 | 514581 969016 347175 728947 1301545 1413213
C | 78450 | 417758 781381 219479 539023 842490 895037
S | 33209 92738 164265 117573 168452 447503 497513
04 2264 1492 1271 2756 1157 2950 2717

Observations: in most cases, the compression is worse than that of using ZLib compres-
sion on the untransformed data (with an average relsize of 60.853 compared to 60.077
for ZLib), with the exceptions of lena, temperature and dkrz4d. Since the transformation
is no longer lossless for the floating point MDD, that leaves only lena as a clear winner
regarding compression rate. Compression and decompression times are more evenly bal-
anced than they are for ZLib, with i—d between 1.48 and 9.81 (again peaking at the floating
point types), which has mostly to do with the constant overhead of doing the (inverse)

4.2. LOSSLESS COMPRESSION 109

wavelet transformations; this means considerably reduced throughput, however. Note that
the ZLib compression stream takes longer here than in ZLib, the most extreme case being
dkrz4d where it takes almost twice as long.

Haar4 lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 73.2304 | 76.2756 33.9151 51.5994 72.7648 60.6027 69.2243
te T | 593893 | 2030025 | 2455507 1952243 2290628 7893826 8788333
C | 101348 | 460363 862209 272556 600599 921756 990919
S | 490081 | 1562574 | 1567905 1666940 1665825 6946222 7760482
0. 431 378 502 490 368 486 437
ta 7T | 704750 | 2441859 | 2874431 2467355 2918908 9968959 11279958
C | 80231 | 418841 790652 224761 762082 953413 1000509
S | 622966 | 2017207 | 2054973 2230076 2133628 9000415 10253718
04 363 315 429 388 289 385 340

Observations: with the exception of lena and cnig, relsize is worse than with the ZLib
compression stream (with an average relsize of 62.516), so on average ZLib compression
is the better choice. Compression and decompression times have an almost constant ratio
between 0.78 and 0.85. This is the only compression stream where decompression takes
longer than compression, the reason for which is that finding the symbol belonging to
an interval in the decoder is more complex than mapping a symbol to an interval in the
encoder. The throughput is below that of using the ZLib compression stream in most
cases, except for the compression of the floating point MDD; on average, the ZLib stream
compresses faster and more efficiently than any of the other streams.

4.2.2 Predictor Usage

Comparing all possible combinations of predictors and tilecompression objects in this work
is not an option due to the large number of configurations, so only a small selection will be
compared. The tilecompression object used will always be ZLib or SepZLib (for interchannel
predictors), likewise only one instance of both predictor types will be used.

4.2.2.1 Intrachannel Predictors

The intrachannel predictor chosen is hyperplane, which replaces a cell’s value with the
difference to the value of its nearest neighbour in a user-defined direction. This means
there are as many possible hyperplane predictors as there are dimensions in the MDD
being compressed. The following two tables give the results for the best and the worst
hyperplane directions; "norm” is the number of the dimension which is normal to the
prediction hyperplane (i.e. the prediction direction).

110 CHAPTER 4. EVALUATION AND RESULTS
Worst lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 65.8661 | 65.7497 23.6967 38.0968 61.563 58.0192 71.3821
norm 0 1 1 0 0 0 1
te T | 249686 | 888877 645351 562910 894878 8858437 6717292

C 1706 7163 8137 7223 7641 35662 38758
Po | 50294 | 184895 246332 96239 182280 218897 202393
S | 197323 | 696329 390396 458977 704461 8603282 6475006
0. 1025 864 1909 1700 943 433 572
tgy 7T | T1866 | 249840 308155 153683 246628 550626 562904
C 29 119 33 33 111 44 45
Po | 49712 | 184269 245311 95064 178596 221678 204957
S | 21809 65040 62399 58182 67524 328336 356834
04 3562 3074 3998 6226 3421 6974 6822
Best lena cnig tomo_small | brain_small | movie_small | temperature | dkrz4d
relsize | 62.5507 | 64.6717 23.2253 37.6137 52.0185 51.3851 55.5522
norm 1 0 0 1 1 2 3
te T | 284350 | 882677 647546 574233 1019717 12731292 13096505
C 1623 6928 8569 7428 7486 34037 35385
Po | 54533 | 152508 249216 97434 173578 516216 521418
S | 227827 | 722762 389256 468887 838153 12180475 12539140
0. 900 870 1903 1666 827 302 293
tqy 7T | 75668 | 216169 309573 154315 231450 794156 828622
C 28 118 33 33 114 40 42
Po | 54087 | 152233 248049 96494 170851 506569 514601
S | 21247 63422 61072 57381 60061 287021 312957
04 3383 3553 3980 6201 3645 4835 4634

Observations: with the exception of brain_small, the hyperplane predictor improved com-
pression rates for all test MDD in both worst and best case. This is also stressed by the
average relsize of 54.91 in the worst and 49.574 in the best case, which is noticeably below
the relsize of ZLib without predictors. Most noteworthy are probably the results for the
floating point fields temperature and dkrz4d, where the predictor allowed reducing the
data size by a further 11-16%, which is even below the relsize of Haar wavelets with ZLib
— but in contrast to those, the predictor coding was lossless for these MDD!. During com-
pression, the predictor takes little time compared to the compression stream, and relative
to the total compression time the predictor takes between 2% for worst case temperature
and 38% for brain_small (usually around 20%, but for the floating point data it’s only
2-4% in both cases). Typically, ZLib takes longer to process the predicted data, however,
so the compression throughput is only around half that without predictors. For decom-
pression, ZLib has a much more stable throughput, which is also considerably higher than

'The hyperplane predictor is usually lossless even for floating point types if the floating point data is
smooth, because that means the deltas are small and mantissa overflows do not occur.

4.2. LOSSLESS COMPRESSION 111

the compression throughput, so the main complexity is then at the predictor, which takes
36-80% of the total time.

Regarding the best normal dimension, there is no clear trend visible: the two raster
images have different optimums, so do the tomograms. The movie compresses best not
when predicting along the temporal dimension, as one would naturally assume, but along
the horizontal axis. Only the floating point fields seem to follow a common rule in that
they compress best when predicting along their widest dimension. All in all, the only
viable approach regarding intrachannel predictors and optimum hyperplane directions is
experimentation at the moment.

4.2.2.2 Interchannel Predictors

Since the only test MDD with structured base types use the RGB type, the natural choice
for interchannel prediction is the delta predictor, for example using green to predict the
other two channels?. The compression algorithms used will be SepZLib and HaarWavelet
with ZLib compression.

SepZLib cnig movie_small Haar; cnig movie_small
relsize 76.7796 59.3979 relsize | 79.2013 64.9763
te T 609660 724730 t. 7T | 1055188 1860660
C 98350 108445 C | 466417 608099
Pe 11326 12308 Pe 11248 12905
S 497463 601424 S | 570704 1216940
0. 1260 1164 0. 728 453
tq T 171659 178431 tqg 7T | 522380 722712
C 89836 100323 C | 418504 536276
Pe 9508 10945 Pe. 11628 10223
S 71425 66545 S 88090 152778
04 4474 4729 04 1470 1167

Observations: in both cases, relsize went down for cnig and up for movie_small, which
implies that there is little channel correlation in cnig (there are indeed large areas of pure
green) and substantial channel correlations in movie_small. The average relsize for SepZLib
went up from 66.895 without to 69.089 with interchannel predictors, whereas for lossless
Haar wavelets it went down from 73.976 without to 72.089 with interchannel predictors.
The best results with the intrachannel hyperplane predictor for these two test MDD were
achieved by SepZLib, however: 64.1214 (norm = 0) for cnig and 45.8479 (norm = 1) with

2While the predicting channel has little relevance in lossless compression, it can be very important in
lossy mode where some channels can be encoded with less precision than others. The human eye is best at
discerning shades of green, followed by red and least of all blue, so green should be chosen as the predicting
channel and encoded with the highest precision, whereas red and blue (deltas or actual colours) can be
encoded with less precision without affecting perceived image quality [40]. The advantage of encoding the
deltas rather than the original channels with less precision is a better preservation of grey levels which are
of particular importance.

112 CHAPTER 4. EVALUATION AND RESULTS

the additional interchannel delta predictor for movie_small (for the full size movie_full cube,
relsize is even better at 38.0751 with this configuration).

4.2.3 Conclusions for Lossless Compression

Although lossless compression has relatively few parameters, the addition of predictors and
configurable compression streams results in a huge number of possible combinations, only
a small, characteristic part of which was tested in this section. Looking at the results, the
following general guidelines can be given for the compression and transformation techniques
tested:

RLE: is obviously only viable for sparse data, as there is none or little compression
achieved for other data types. RLE is very fast for all data types, and for sparse
data its relsize is very close to the best achieved by the other compression techniques
(e.g. for tomo_small relsize is only 5% worse than that of ZLib, but compression is
more than three times faster).

ZLib: emphasized its status as the standard in lossless compression, having the best aver-
age relsize and good speed in most cases. Floating point data results in greatly
reduced throughput when compressing, however.

Haar Wavelets: have rather mediocre results for the lossless case. The best average rel-
size is slightly worse than that of ZLib without predictors and considerably worse
than ZLib with predictors, while taking noticeably more time. This is not all that
surprising when looking at figure 3.8 on page 45, where the detail bands were en-
hanced, showing a lot of random noise: a lossy algorithm could ignore the noise and
thereby achieve much better compression rates, but a lossless one has to preserve the
noise, which greatly compromises its rate. Lossless Haar wavelets work well for some
synthetic data (e.g. a checkerboard compresses to half the size of ZLib with Haar
wavelets), but especially regarding the effects of intrachannel predictors on regular
ZLib, there can be no recommendation for lossless Haar wavelets for the kind of data
found in the test set.

Channel Separation: can often improve compression rates, especially in combination
with ZLib compression, so this is always worth trying for structured base types
despite the little overhead, although there can be no guarantee that the rate doesn’t
deteriorate.

Predictors: intrachannel predictors worked very well on most test MDD, even floating
point fields (16% better for dkrz4d with ZLib, which corresponds to savings of 614kB
compared to compressing the 4MB object without predictors). Considering the low
overhead (only about 30-50% the time needed for the Haar transformations), it is
highly recommended to try improving the compression rate with intrachannel pre-
diction; only experimentation can determine the best correlation direction, however,

4.3. LOSSY WAVELET COMPRESSION 113

which varied even for data of the same dimensionality and axis interpretation. Inter-
channel predictors improved the rates only in half the test cases and not by as much
as intrachannel prediction; but since they improve compression rates for at least one
test MDD, their presence in the engine is justified.

When looking at the timings for interchannel and intrachannel predictors, it is obvi-
ous that intrachannel predictors take longer. The reason for that is that intrachannel
predictors must be able to iterate through the data in non-default order, because
the values used for prediction are read from the same channel the deltas are written
to?; the time difference between interchannel and intrachannel predictors reflects the
time difference between iteration in default and arbitrary order.

This leads to the following general guidelines for lossless compression, based on the test
data:

1. if compression speed is highly critical: if the data is sparse, use RLE, otherwise turn
off compression entirely;

2. if speed is less mandatory, use ZLib variants. For structured base types compare the
compression rates achieved by ZLib and SepZLib;

3. try intrachannel predictors for any base type, in particular hyperplane prediction.
Find the best normal dimension by comparing compression rates with all possible
normals;

4. for structured base types, try interchannel prediction.

4.3 Lossy Wavelet Compression

Lossy compression in this engine means wavelet compression, so this section is dedicated
to the quantizing wavelets described in section 3.3.4.2, whose filter coefficients are listed
in appendix B. A lossy wavelet compression object consists of three major modules:

1. the core class, which is a direct descendant of qwaveletcomp in figure 3.4 and performs
the basic tasks of channel separation, predictor and meta data management as well
as the actual (inverse) wavelet transformation. There are currently 22 different lossy
orthogonal wavelet classes available, falling into four groups (Haar, Daubechies, Least
Asymmetric and Coiflet) with filter lengths between 2 and 30 taps;

2. the quantization engine, which converts the wavelet coefficient array into a quan-
tized representation and back. There are currently three approaches possible: homo-
geneous band quantization (section 3.4.2) and Generalized Zerotree (section 3.4.3)

3This applies not only to hyperplane prediction but even more so to the averaging neighbours approaches
(see the prediction context in figure 3.19 on page 95).

114 CHAPTER 4. EVALUATION AND RESULTS

with one-pass or two-pass coding (section 3.4.3.7). All three variants require a qua-
lity parameter, which is the number of bits to use per coefficient in homogeneous
band quantization, whereas for the zerotree coders it can be either minimum SNR,
minimum PSNR or maximum residual per cell (section 3.4.3.8);

3. the compression stream used to actually (de)compress the quantized representation
of the coefficient array. The default streams used will be ZLib for homogeneous band
quantization and ArithCoder for zerotree coding. ArithCoder only performs well for
small alphabets and uncorrelated symbol sequences (no patterns) and is therefore
unsuitable for homogeneous band quantization; measurements made in this respect
are not included in this work, however.

Listing results for all possible configurations in this thesis would obviously increase its
volume out of proportion, so a representative subset must be found, which is necessarily
tiny compared to all possibilities. Fortunately, most of the results follow very similar rules,
so this is possible without over-generalization. There may be MDD other than the ones
tested here where these rules no longer apply, however.

4.3.1 Relative Sizes and Timings

The wavelets used in this section are normally lossy, but the amount of loss can be limited
via a quality parameter of the wavelet quantization module*. It is important to under-
stand that the quality parameter concerns the quantization of the wavelet coefficients, not
the reconstructed data; errors can accumulate in the inverse wavelet transformation, as
explained in section 3.4.1, so SNR or maximum residual for wavelet coefficients can differ
considerably from SNR and maximum residual of the reconstructed data. In order to avoid
confusion, I will use SNR,, and RES,, when they apply to the wavelet coefficients (i.e. the
quality parameters) and SNR and RES for the reconstructed data.

The measurements were done in such a way that starting from a given minimum quality,
the test data was compressed with this quality, logging the current values of the quality
parameter, the resulting (P)SNR, relsize and maximum difference values for the recon-
structed data as well as timing information for all major modules. The quality parameter
was then increased, the test data compressed again and so forth until a maximum quality
was reached or the data could be reconstructed without loss (when timing the engine,
measurements were always run up to a maximum quality parameter)®. The resulting data
was then represented graphically in two kinds of diagrams, one for timing purposes and

4Provided this quality parameter is high enough, many MDD can be compressed without loss even with
this part of the compression engine, although in this case compression rates can be far worse than when
using a dedicated lossless compression technique.

®The maximum SNR,, was 22° for timing measurements and 2°° for size-snr analysis; for homogeneous
band quantization, the maximum number of bits used was 32 in both cases. SNR coding started with an
SNR,, of 2, which was doubled after each iteration until the maximum SNR,, was reached; for homogeneous
band quantization, coding started with 2 bits per coefficient and that value was incremented until the
maximum number of bits was reached.

4.3. LOSSY WAVELET COMPRESSION 115

one for rate-distortion analysis. Axes representing (P)SNR or residual values are always
plotted logarithmically.

For timing graphs, the SNR,, is plotted on the abscissa and the time taken for each
major module on the ordinate; these graphs will be called quality-time graphs. When
comparing graphs for different configurations, the one whose curve is lowest is faster, i.e.
better as far as runtime considerations are concerned.

The efficiency of a lossy compression algorithm is determined by its relsize and its
distortion, both of which should be as small as possible. For the graphs in this section, the
relsize is plotted on the abscissa and the SNR of the reconstructed data on the ordinate®;
this kind of graph will be called a size-snr graph. Note that since for lossless reconstruction
the SNR would be oo, this case can’t be plotted. Another type of graph plots relsize vs.
maximum residual of the reconstructed data (size-residual). When comparing these graphs
for two algorithms a and b, a is better than b if

1. a’s relsize for lossless reconstruction is smaller than b’s
2. a’s size-snr graph is above that of b

3. a’s size-residual graph is below that of b

Since these conditions are rarely all true at the same time, it depends on the user’s require-
ments which algorithm is better than another. If the user wants lossless reconstruction,
then condition 1 is the only one of importance; otherwise it depends on the quality the user
wants (some wavelets work better for low rates, some better for high ones) and whether
the average distortion should be minimal (condition 2) or the maximum residual per cell
(condition 3).

In this section, size-snr and quality-time comparison graphs will be given for all test
MDD using one-pass zerotree coding with SNR termination; zerotree coding was chosen
because it provides the best rates (see section 4.3.2) and SNR termination because it best
represents the average distortion. The comparisons will be made across a selection of
wavelet filters from each group and all filter lengths. Additional diagrams will be given
where appropriate to stress extraordinary properties. Because the time taken depends
on the quality parameter, direct comparison with the lossless results is not possible; to
allow some reference nonetheless, time consumed and throughput will be given for the
Daubechies 4-tap wavelet with SNR,, = 4096.

4.3.1.1 lena

Figure 4.2 shows the quality-time graphs for compression and decompression of lena with
the Daubechies 4-tap wavelet. The diagrams visualize the time consumed by each of the
major modules involved: the core class (daub4), the arithmetic coder (ArithComp, ArithDe-
comp), building the zerotree structure (ZBuild), the zerotree coder (ZEncode, ZDecode)

6The SNR is basically the inverse of the distortion, so it should be maximal to achieve minimal distor-
tion.

116 CHAPTER 4. EVALUATION AND RESULTS

6e+06 4.5e+06

Datibd ——— Daub4 —+——
ArithComp -------- 4e+06 [ArithDecomp ----%---
ZBuild B ZBuild £
5e+06 B
35+06
L 4 L *
4e+06 3e+06 *
*
*
¥
° © 25406 - *
E ser5f £ %X
= L S *
26406 | e E 156406 - e
X *
*
* *
* 1e+06 X
16406 |- K g oK
o 500000 x 1
L ¥ T e s . e S R SR
J;uWﬁ%ﬁﬁﬁﬁMﬁﬁﬁﬁﬁﬁ oeeagEdpgeeiiotesssnosos88s08s
o LY R RHE! : : : 0 Lyt n i ! !
1 32 1024 32768 1.04858e+06 3.35544e+07 1.07374+09 1 2 1024 32768 1.04858e+06 3.35544e+07 1.07374e+09
SNR(w) SNR(w)

Figure 4.2: Lena detailed timings for Daubechies 4-tap wavelets

and the resulting total time. As expected, the timings for the core class and the build-
ing of the tree structure are constant and only zerotree coder and arithmetic coder vary
with the SNR,,. As can be seen, ZFEncode takes most of the time during compression,
whereas ZDecode takes very little time during decompression; the reason for that lies in
the aggregation passes during encoding described in section 3.4.3.6, which are not necessary
during decoding (ZFEncode would take even longer if the aggregated values weren’t avail-
able). The arithmetic coder is actually faster compressing than decompressing, which was
already observed in section 4.2.1.4. We can also see that for higher quality (SNR,, > 1024
in this case), the graph approximates a perfectly straight line, so the time is proportional
to the logarithm of the SNR,,. This is true for all test MDD and all filters once SNR,,
has reached a certain value, although Haar wavelets have a rather jagged curve. The total
times for compression and decompression are comparable, with compression taking about
25% longer than decompression for higher quality. The total time for the Daubechies 4-tap
wavelet with SNR,, = 4096 is 2407487 us for compression and 1552698us for decompression,
leading to throughput values 6. = 106 and 6,; = 165.

800000 T T T T T T T T T T T T T 2e+06 T
1.9e+06 |+
700000 B |
\
\
1.8e+06 ||
\
e \
600000 - B |
1.7e+06 | |
2 —) |
o 3 \
£ 500000 S 16et06 [|
GE) @ \
E £ \
= -~ F o o1seos [|
400000 1 |
\
\
\
A 14e+06 ||
\
300000 1 \
13et06 |- |
— ——
200000 | | | | | | | | | | | | | 106406 P L L T —
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Filter length Filter length

Figure 4.3: Lena timing comparisons for wavelet transformation and zerotree coder

4.3. LOSSY WAVELET COMPRESSION 117

Figure 4.3 compares the time taken by the wavelet core class (left) and the zerotree
encoder (right) for wavelet filters with length 2-30. The timings for the core class are
almost on a perfect line, with only one major exception at filter length 6, the reason for
which is that from this filter length on the generic orthowavelet class is used, whereas
there are specialized (and therefore faster) classes for filter lengths 2 and 4. The timings
for the zerotree coder show that the coder requires approximately 50% more time for the
Haar wavelet (filter length 2) than for any of the other wavelets. The reason for that is
that in this case the significant coefficients in the tree are more evenly spaced out than
for the other filters where they are concentrated around small values, so the aggregation
must be performed more often: even one significant coefficient in the currently encoded
subtree (starting in a node on the coarsest scale level) requires running the aggregation
code for the entire subtree before the next dominant pass in the current implementation. If
many coefficients have similar values, many of them will be encoded in the same dominant
pass, so the time taken for the aggregation is small compared to the encoding time. If
the values cover a wide range, on the other hand, only few coefficients will be encoded
during each pass and the aggregation time becomes dominant, as is apparently the case for
Haar wavelets. Because each node in a D-dimensional zerotree has 27 children, this effect
becomes more pronounced in higher dimensional spaces, as can be seen in figures 4.9 and
4.15. Note that this is an effect intrinsic to zerotree quantization and doesn’t happen in
homogeneous band quantization. Also note that this doesn’t mean that zerotree coding has
exponential complexity, because even if all subtrees have to be aggregated after one pass,
the number of nodes visited for the aggregation equals the number of cells; the exponential
complexity only occurs locally in a subtree for the extreme case when only one coefficient
in the subtree is encoded during a dominant pass. Improving the zerotree aggregation
algorithm to minimize the aggregation path is therefore an attractive optimization for the
future work section. When decoding, on the other hand, the total time consumed when
using Haar wavelets is typically at the lower end of the scale.

Figure 4.4 shows the quality-time comparison graph for 11 representative wavelet
classes. The curves are very close to each other, so using longer filters does not affect
performance dramatically because the compression time is dominated by zerotree coder
and arithmetic coder (compare with figure 4.2). The general trend is that shorter filters
take less time, the only exception being the Haar wavelet, for reasons explained above and
shown in figure 4.3 to the right.

Figure 4.5 shows the size-snr comparison graph for the same 11 wavelet classes. The
differences between the wavelets are even smaller than the timing differences for this MDD,
the winners by a very close margin being Daubechies 6-tap and Least Asymmetric 8-tap
wavelets, whereas the loser (by an equally close margin) is the Haar wavelet.

4.3.1.2 cnig

Figure 4.6 shows timing and size-snr comparison graphs for a selection of wavelets for the
cnig MDD. The graphs are very similar to the ones for lena in figures 4.4 and 4.5, therefore
they are printed as smaller versions. The only notable difference to lena is that the Haar

118 CHAPTER 4. EVALUATION AND RESULTS

7et+06 —T T T T
Coifletl8 —+—
Coiflet30 ---<---
Coiflet6 -
6e+06 Daubechies 3 -y
LAY -
Daubechiest - @---- vy X AW
5et06 [LeastAsyml2 ---A--- - A i
LeastAsym20 - 4--- - <
LeastAsym8 —<— >y
4e+06 4
)
E
|_
3et06 E
2e+06 B
lev06 L1 4 L g i
O 1 1 1 1
64 4096 2.6214e+05 1.6777e+07
SNR(w)
Figure 4.4: Lena timing comparisons
3.43597e+10 T T . :
Coifletl8 —+—
Coiflet30 ---»---
Coiflet6 K-
1.07374e+09 | Daubechies {3) B
Daubechiess — @
3.35544e+07 | LeastAsyml2 - 4
LeastAsym20 - &---
LeastAsym8 —v—
1.04858e+06 4
[0
4
(%)

32768
1024

2P

1 1 1 1 1 1
0 20 40 60 80 100 120

Relsize

Figure 4.5: Lena size-snr comparisons

wavelet beats most of the other wavelets for relsize higher than 50. The total time for the
Daubechies 4-tap wavelet with SNR,, = 4096 is 6955268us for compression and 4362677 us
for decompression, leading to throughput values 6. = 110 and 6, = 176, which are also
very similar to lena. Another property in common with lena is that the relsize for lossless

4.3. LOSSY WAVELET COMPRESSION 119

2e+07 T 3.43597e+10 T T
Coifletl8 —+— Coifletl8 —+—
1000071 Colflad ¥ = Colfits —x. 2
Daubechies 8 AR 107374e+09 | Daubechies 0 &1
1.6e+07 -
Daubechies -~ @---- Y X Daubechiest --@-- ¥
14e+07 | LeastAsym12 & v A 1 3.35544e+07 - LeastAsymi2 4 1
LeastAsym20 -4 MY £ LeastAsym20 - & 4
LeastAsym8 —v— ~ ¥ A LeastAsym8 —v—
1.2e+07 - QHaar ---¥--- v 4 1048586406 QHaar ¥
© o ’
£
= 1et07 i %
[
32768 bl
8et06 - 9
6e+06 - 1 1024]
4e+06 |- X 1
B & 325]
2e+06 i 8 4
0 1
64 4096 2.6214e+05 16777e+07 0 20 40 60 80 100 120
SNR(w) Relsize

Figure 4.6: CNIG timing and size-snr comparisons

reconstruction is larger than 100 and considerably above that achievable with a dedicated
lossless compression algorithm like in section 4.2.2.1.

4.3.1.3 tomo_small

3et07 - . | |
Coifletl8 —+—
Coiflet30 --->---
Coiflet6 ---->----
25e+07 | Daubechies 3 .
-V
Daubechies6 @ .
LeastAsym12 .
2e+07 LeastAsym20 - A- - ..

LeastAsym8 ——

1.5e+07 |

Time

1e+07 |

ol
64 4096 2.6214e+05 1.6777e+07

SNR(w)

Figure 4.7: Tomogram timing comparisons

Figure 4.7 shows timing comparisons for the compression of tomo_small. As observed
previously in section 4.3.1.1, the total time taken for encoding with Haar wavelets is higher
than with the other filters, and since the tomogram is 3D rather than 2D, the effect is more
pronounced. Apart from Haar wavelets, the time taken depends on the filter length, so

120 CHAPTER 4. EVALUATION AND RESULTS

Daubechies 4-tap filters are the fastest. The total time for the Daubechies 4-tap wavelet
with SNR,, = 4096 is 8884309us for compression and 4387475us for decompression, leading
to throughput values 6. = 139 and 6; = 281, where the 6, is considerably higher than
in the 2D cases, which is most likely caused by the sparsity of the data (see also 6, for
movie_small, which is also 3D, but not sparse).

3.43597e+10 T T T T T T T T T
Coifletl8 —+—
Coifleté --------
1.07374e+09 Daubechies A
3.35544e+07 Daubechiest @]
LeastAsym12 ----A---
LeastAsym20 - &---
1.04858e+06 | 4

32768

SNR

1024

10 20 30 40 50 60 70 80 9 100
Relsize

Figure 4.8: Tomogram size-snr comparisons

Figure 4.8 shows the size-snr comparison graphs for the compression of tomo_small.
This tomogram is rather sparse and contains a certain amount of noise, which poses a
problem for longer (and therefore smoother) wavelet filters. It therefore comes as no
surprise that the shortest filter (Haar) performs best, its curve being above all others for
all sizes and allowing lossless reconstruction with a relsize of 60.0927; the other wavelets
perform worse in direct proportion to their length for the most part (only for very high
quality does the longest filter (Coiflet 30-tap) perform slightly better than the second
longest filters with 20 taps. Clearly, Haar wavelets are the best choice for sparse and noisy
data. If lossless reconstruction is required, an actual lossless compression algorithm should
be chosen, however, since even the best lossless relsize achievable with wavelets is about
2.5 times higher than that of ZLib and even twice as large as that of RLE (see sections
4.2.1.1 and 4.2.1.2).

4.3.1.4 brain_small

Figure 4.9 shows the timing comparisons for the compression of brain_small. All in all,
the compression times are very similar for all wavelets with the exception of Haar, which
takes about twice as long as most of the other wavelets (for reasons already explained in

4.3. LOSSY WAVELET COMPRESSION 121

2e+07

Coifletl8 —+—

18e+07 Coiflet6 % 1
Daubechies -3

1.6e+07 | 4

Daubechiess -~ @

14et07 L LeasAsymi2 -4 i
4et0 LeastAsym20 - -
LeastAsym8 —<—
1.2e+07 | B

let07

Time

64 4096 26214e+05 16777e+07
SNR(w)

Figure 4.9: Brain timing comparisons

section 4.3.1.1) and the Coiflet 30-tap wavelet due to its length. The total time for the
Daubechies 4-tap wavelet with SNR,, = 4096 is 3960733us for compression and 2088218 s
for decompression, leading to throughput values 6. = 242 and 6; = 458, which are ap-
proximately twice as large as they were for tomo_small. This is fairly straightforward to
understand because the data is converted to a floating point array for wavelet transforma-
tion and quantization, the size and complexity of which only depends on the number of
cells, not the original base type. Since each cell” of brain_small has twice the size of a cell
in tomo_small, but the complexity of encoding a cell is about the same, the throughput
will be approximately twice as large as that of tomo_small.

Figure 4.10 shows the size-snr comparison graph for brain_small. Similar to the one for
tomo_small, the Haar wavelet universally performs best, allowing lossless reconstruction at
a relsize of 81.7542, the other filters performing worse in direct proportion to their length.
But as with tomo_small, lossless reconstruction can be achieved far more efficiently with
a dedicated lossless algorithm by a factor of more than 2. Depending on which levels of
distortion are acceptable, far better results can be achieved by lossy wavelets, however,
which will be discussed in more detail in section 4.3.6.

4.3.1.5 movie_small

Figure 4.11 shows the timing comparisons for the compression of movie_small. Compared
to tomo_small, the speed penality for the Haar wavelet is even more severe, taking almost

7Or rather more precisely: each atomic type within each cell, because wavelet techniques always do
channel separation.

122 CHAPTER 4. EVALUATION AND RESULTS

1.1259e+15 T : . ; .
Coifletl8 —+—
Coiflet30 ——><--—- L
3.51844e+13 Coiflet6 -------- A]
Daubechies & Pa
Y i .
1.09951e+12 | *y 9 1
Daubechiest @ | //
43507e+10 [LeastAsym12 -4 ® /K\‘]
343397e+10 LeastAsym20 ---- 4--- v £ A

LeastAsym8 —v—

1.07374e+09 _
o
Z 3.35544e+07 _
)
1.04858e+06 _
32768 _
1024 _
2| _
1 " I I | | |
0 20 40 60 80 100 120
Relsize
Figure 4.10: Brain size-snr comparisons
5e+07 |
Coifletls —r— . . .
COiflet30 - -
4907 1 Coiflet6 % . |
Daubechies 3 .
4e+07 . |
Daubechiess -~ @- =
Bet07 | LeastAsymi2 |
35e+0 Lesthgmiz -+ .
LeatAsym8 —<— v-v
3e+07 | T |
g y-v
E oset7 . _
|_ v
v %
2e+07 vV N |
15e+07 | B e ‘?‘_
1

64 409 2.6214e+05 1.6777e+07
SNR(w)

Figure 4.11: Movie timing comparisons

three times as long as most other wavelets, which indicates very evenly distributed wavelet
coefficient values. Also the longest filter (Coiflet 30-tap) takes noticeably longer than the
others, which have almost identical timing values. The total time for the Daubechies 4-tap
wavelet with SNR,, = 4096 is 8036931us for compression and 5030343us for decompres-

4.3. LOSSY WAVELET COMPRESSION 123

sion, leading to throughput values 6, = 105 and 6; = 168. As expected, the compression
throughput is very close to that of tomo_small again, whereas the decompression through-
put is considerably lower and closer to lena and cnig — a consequence of tomo_small being
sparse, in contrast to movie_small.

3.43597e+10 T T T T T T
Coifletl8 —+—
Coiflet6 -~
107374er09 | Pabechies U .
Daubechiest - @- -
LeastAsym12 -2
3.35544e+07 | LesstAsym20 4 8
LeastAsym8 ——
[0
=z 1.04858e+06 | E
N
32768 e E
Mtw/
= < K
1024 | b
32“ 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Relsize

Figure 4.12: Movie size-snr comparisons

Figure 4.12 shows the size-snr comparison graph for the compression of movie_small. In
contrast to tomo_small, most wavelets perform equally well, once again with the exception
of the Haar wavelet which performs best in particular for relsize above 70, and the Coiflet
30-tap wavelet which has once again the worst performance. The reason for the particu-
larily inferior performance of Coiflet30 for this MDD lies most likely in its spatial extent
60 x 80 x 60, which becomes 15 x 20 x 15 after two coarsening steps, which still allows
applying wavelet filters with a maximum length of 20 taps along one dimension; since this
is not true for Coiflet30, the multiresolution analysis for this filter has to terminate one
level earlier than for all the others and therefore can’t concentrate the energy as well on
the coarse scale levels as the other wavelets. The best relsize for lossless reconstruction can
once again be obtained with the Haar wavelet at 114.512; however this is yet again more
than twice the relsize of using a dedicated lossless compression algorithm with predictors.

4.3.1.6 temperature

Figure 4.13 shows the timing comparisons for the compression of temperature. The time
required for encoding data transformed with the Haar wavelet relative to the time for the
other wavelets is smaller for this MDD than it was for movie_small and is only about 50%
higher on average. Apart from this exception, the timing values for the other wavelets once

124 CHAPTER 4. EVALUATION AND RESULTS

3et07 — T T]
Coifletl8 —+—
Coiflet6 -

25e+07 L Daubechies -3 |
Daubechiest @
LeastAsym12 —--A---

2et07 | LeastAsym20 4
LeastAsym8 —<—

(0]
E 1ser07 |
|_
1e+07 | ;
i oL '
O 1 1 1 1
64 4096 26214e+05 1.6777e+07

SNR(w)

Figure 4.13: Temperature timing comparisons

again scale proportionally with the filter length. The total time for the Daubechies 4-tap
wavelet with SNR,, = 4096 is 7388013 us for compression and 3695840us for decompression,
leading to throughput values 6. = 520 and 6; = 1039, which are again approximately twice
as large as those of brain_small, in accordance with another doubling of the base type size.
The compression throughput is thus even slightly higher than that of ZLib (see section
4.2.1.2), although the decompression throughput is by an order of magnitude below that
of ZLib.

Figure 4.14 shows the size-snr comparison graph for the compression of temperature.
Most of the time, all wavelets perform simularily well, with clearly visible exceptions only
for high quality. Closer inspection reveals that with the exception of the Coiflet 6-tap
wavelet the Haar wavelet is beat by a small margin by filters with lengths < 12 for relsize
up to around 60. The Coiflet6 wavelet has constant SNR ~ 10'? for relsize higher than 50,
which can only be caused by the accumulation of numerical errors during zerotree coding
for very high SNR,, values. This effect can also be observed in dkrz4d, whose origin is
the same laboratory as this MDD’s, so the data from this laboratory obviously has some
properties which cause convergence problems with the Coiflet6 wavelet. The best relsize
for lossless reconstruction is once again achieved by the Haar wavelet at 71.1636, however.
This is still higher than the best relsize achieved by dedicated lossless compression algo-
rithms, but not by as much as in previous cases. The only other wavelet to achieve lossless
reconstruction within the maximum SNR,, of 2°° was the Daubechies 20-tap wavelet, but
with a considerably higher relsize of 122.618.

4.3. LOSSY WAVELET COMPRESSION 125

1.18059%+21 T T T T T T
Coifletl8 —+—
Coiflet30 ——><--—- va
Coiflet6 -)
1.15292e+18 - Daubechies 1 2 7
Daubechiest @
1.1259%+15 LesstAsyml2 — 4 = 1
LeastAsym20 — - 5%
LeastAsym8 —v—
1.09951e+12 KA KK KA KK KK
[0 d
Z
(%)
1.07374e+09]
1.04858e+06 B
1024 £]
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Relsize

Figure 4.14: Temperature size-snr comparisons

4.3.1.7 dkrzad

1.2e+08

Coiflet18 — 1
Coiflet30 ---*--- v
Coiflet6 ------ v
1e+08 L Daubechies -3 v |
/V"V
Daubechiess - T
LeastAsym12 v

8et+07 | LeastAsym20 -4 4
LeastAsym8 —— .
QHaar —»—-- ¥V

Time

6e+07 P 4

4e+07 E

2e+07

26214e+05 1.6777e+07
SNR(w)

Figure 4.15: DKRZ timing comparisons

Figure 4.15 shows the timing comparisons for the compression of dkrz4d. The speed
penalty for the Haar wavelet is the largest so far, because of the exponential complexity

126 CHAPTER 4. EVALUATION AND RESULTS

of aggregating the node values described in section 4.3.1.1, taking more than five times
as long as the other wavelets on average. Another (relatively small) timing difference
exists between filters longer and shorter than 15 taps. The wavelet transformation as such
actually takes less time for the longer filters than it does for the shorter ones, because
they can’t be applied along the dimension with width 15 on the finest level; this causes a
similar absence of energy concentration as in the case of Haar wavelets and consequently
longer overall compression time. The total time for the Daubechies 4-tap wavelet with
SNR,, = 4096 is 9366951us for compression and 4648919us for decompression, leading to
throughput values 6. = 410 and 6; = 826.

1.1259e+15

Coifletls —+

3.51844e+13 | Coiflets -

Daubechies -]
1.09951e+12 [
Daubechiess -~ @ >
343597e+10 [LeastAsyml2 A
LeastAsym20 - & RESRR K HARIN

1.07374e+09

3.35544e+07

SNR

1.04858e+06

32768

1024

1 K’—Av" 1 1 1 1
0 10 20 30 40 50 60 70

Relsize

Figure 4.16: DKRZ size-snr comparisons

Figure 4.16 shows the size-snr comparison graph for the compression of dkrz4d. Same
as the timing graph in figure 4.15, there are two major branches, the lower one with filters
longer than 15 taps and the upper one with filters shorter than that. The longer filters
perform noticeably worse, which is not suprising for an MDD that has an average length
of 30 cells along each dimension. Haar wavelets perform worse than most filters with a
maximum length of 12 taps for relsize up to 40 and worse than filters with a maximum
length of 8 taps for relsize up to 60; also the same SNR convergence problem of the Coiflet
6-tap wavelet can be observed here that happened with the temperature MDD, albeit at
a lower SNR of approximately 3 - 10'°. No wavelet achieves lossless reconstruction within
the maximum SNR,, of 2%, the closest being the 8-tap Least Asymmetric wavelet with a
maximum residual per cell of 2.4 - 107 at a relsize of 65.3511 — which is better than the
relsize achieved by the lossless ZLib without predictors.

4.3. LOSSY WAVELET COMPRESSION 127

4.3.2 Quantization Comparisons

As described in section 3.4 and towards the beginning of section 4.3, there are three wavelet
quantization techniques: homogeneous band quantization and zerotree coding with one or
two passes. Measurements so far were taken with one-pass zerotree coding only; the purpose
of this section is to compare this quantization with the other two.

Homogeneous band quantization, described in section 3.4.2, is the oldest and simplest
technique: the bands are partitioned into equivalence groups by a band iterator and within
each group all coefficients are quantized with a constant number of bits. The partitioning
chosen here is the default leveldet, where all bands in the same scale level and with the
same degree of detail are within the same band equivalence group (see section 3.4.2.1). The
bit allocation chosen for this test was an identical number of bits for all band equivalence
groups; this is not optimal, as for instance all-detail bands can often be quantized to 0
bits without noticeably affecting distortion levels (while reducing the rate), but choosing
a constant number of bits reduced the number of parameters to one and thus allowed a
straightforward comparison with SNR zerotree coding.

3.43597e+10 . : . . |
one-pass zerotree —+—
homogeneous -------- /7+
1.07374e+09)]
"

3.35544e+07 //,’ . *]

SNR
% .

1.04858e+06
32768 |- +/,,,/+;ff,,»»»*‘* .
K
1024 F X]
2 x
nf *
r ¥]
1 1 1 1 1 1
0 20 4 60 80 100 120
Relsize

Figure 4.17: Lena size-snr quantization comparisons

Figure 4.17 shows size-snr comparisons between one-pass and two-pass zerotree coding
and homogeneous band quantization of the lena MDD transformed with the Daubechies
4-tap wavelet. As can be clearly seen, the two zerotree variants have very similar size-snr
curves for relsize up to 20. For relsize up to 80, the two curves are still very close, but one-
pass coding has an obvious edge over two-pass coding. Beyond a relsize of 80, one-pass
coding performs noticeably better than two-pass coding for this MDD, allowing lossless
reconstruction at a relsize of 114.907, in contrast to two-pass coding where the relsize for

128 CHAPTER 4. EVALUATION AND RESULTS

lossless reconstruction is 133.496. The much simpler homogeneous band quantization is
clearly beaten by both zerotree coders except for the two-pass zerotree at very high quality;
it must be noted that there is still plenty of room for improvement by adding a sophisticated
statistical model and dedicated quantizers to homogeneous band quantization, as described
in section 3.4.2.3.

6e+06 3.5e+06

Daubd —+— "Daubs ——
ArithComp ----%---- LQuantEncode -------
5e+06 - ZBuild B i 3et06 QCtrlEncode £
2.5e+06 -
4e+06
2e+06 -
))
E 3er06 - £
= ¥ [
e 15e+06 |-
X%
2e+06 o
R 1e+06 |
* K
1e+06 * KK
%K 500000
*** B e B i
OO OO OO OO O E O O B B OB T T T ET T [] s e e e e e sc e M N NG M MG NG MG M M MG M Mg Mt M G M Mg e e e e

1 32 1024 32768 1.04858e+06 3.35544e+07 1.07374e+09 0 5 10 15 20 25 30 35
SNR(w) Bits

Figure 4.18: Lena detailed quantization timing comparisons

Figure 4.18 shows detailed timing measurements for the quantization of the
Daubechies4-transformed lena image for two-pass zerotree coding (left) and homogeneous
band quantization (right). The timings for two-pass zerotree coding are very similar to
those of the one-pass variant in figure 4.2, with a maximum time under 6 - 10%us in both
cases. In contrast to one-pass coding, the complexity of the arithmetic coder exceeds that
of the zerotree encoding algorithm for higher quality, however. The reason is that in two-
pass coding each node is only encoded as significant once in the dominant pass, and only
the dominant pass needs aggregated node values. So as coding proceeds, fewer and fewer
nodes remain that haven’t been encoded as significant in a dominant pass yet and only
when one of those is encoded as significant for the first time does the aggregation algo-
rithm need to be rerun for that subtree; therefore, the complexity for the zerotree coder
diminishes for high quality. That of the (adaptive) arithmetic coder increases, however,
because now it operates on a six-symbol alphabet rather than the four-symbol alphabet of
the one-pass coder: since the adaptive coder has to maintain an ordered list of probabilities
for all symbols, it has higher complexity for large alphabets than it has for small ones.

The timings for band quantization to the right show two characteristic peaks of the
ZLib compression stream for 9 and 17 bits. The reason for this is that the quantizer uses
the nearest integer with at least as many bits as the quantization requires to hold the
quantized value, and at 9 and 17 quantization bits this integer type changes from 8 to
16 bits and from 16 to 32 bits respectively, consequently the peaks are common to all
test MDD. The ZLib compression stream used here obviously takes much more time for
compressing integer values longer than 8 bits where the most significant bits are cleared
than where they are filled (compare the time taken for 9 bits with that for 16 bits, or

4.3. LOSSY WAVELET COMPRESSION 129

even more extreme that for 17 bits compared to that for 31 bits). The reason for that lies
most likely in the fact that e.g. a 16 bit type where the most significant byte is mostly
unused appears as an interleaved sequence of bytes covering the full range (least significant
bytes) and bytes covering only a very small range around 0 (most significant bytes); there
will be many identical most significant bytes, therefore the dictionary coder has to check
more potential pattern matches than if the significant bytes covered a larger range and
consequently there were fewer identical values. As can be seen in figure 4.18, the time
taken for quantization (LQuantEncode + QCtrlEncode) is insubstantial and by orders of
magnitude smaller than that of all other modules; the total time is dominated by the ZLib
compression stream, especially around 10 and 17 bits per coefficient. The total coding time
is still noticeably smaller than that of the zerotree coders even in the most extreme case
around 17 bits with 3.5 - 10%us. For decompression, the speed advantage of homogeneous
band quantization is much more severe due to ZLib’s faster decompression speed, leading
to approximately 10 times the decompression speed of the zerotree coders.

3.43597e+10

2e+07

T T T T T
one-pass zerotree —+— one-pass zerotree —+—

1073748400 | homogeneous - 1 180407 |

1.6e+07
3.35544e+07 []
* 1.4e+07
1.04858e+06 | ; 1 %
/ 12407 /

32768 %

AT 1e+07 -
1004 [- Tk]
AT - 8e+06 |- -

K
R * B
g/ o 6e+06 -
b KT
T
¢ 1 4e+06

* A
* Y

003125 E I I I I I I 2e+06 L L I I I
0 10 20 30 40 50 60 70 1 32 1024 32768 1.04858e+06 3.35544e+07 1.07374e+09
Relsize SNR(w)

Time

SNR
\

Figure 4.19: Tomogram quantization comparisons

Figure 4.19 shows the size-snr comparison graphs for the three quantization approaches
applied to the Daubechies4-transformed tomo_small data cube (left) and the timing com-
parison between the one-pass and the two-pass zerotree coder (right). In this case, the
two-pass zerotree coder performs best throughout the entire range, achieving lossless re-
construction at a relsize of 80.7758 in contrast to homogeneous band quantization with
a relsize of 90.6414 and the one-pass coder with a relsize of 96.6089. The time taken by
the two-pass coder is again very similar to that of the one-pass coder (where the two-pass
coder is slightly faster).

The size-snr graphs for the other MDD show the following behaviour: for cnig and
movie_small the one-pass coder wins, for brain_small the two-pass coder wins, and for
temperature and dkrz4d the curves are almost identical with a tiny advantage for the
two-pass coder. Since both tomo_small and brain_small are sparse MDD, this implies that
the two-pass coder works best for sparse data, whereas the one-pass coder works best for
densely populated data. The runtime differences of the two approaches are typically small

130 CHAPTER 4. EVALUATION AND RESULTS

(on average the two-pass coder is around 10% faster). Homogeneous band quantization
has clearly inferior performance almost everywhere, but has speed advantages, especially
for decompression.

4et+06 T T 1e+07 T T
zerotree, compress —— Zerotree, compress —+—
356406 homogeneous, compress ----- o+ 9e+06 - homogeneous, compress -----
) homogeneous, decompress -3 +///” homogeneous, decompress -3
— 8e+06
3et06 - E
Tet06 -
250406 ; E cer6 |
© / 9]
E 2er08 [E sei06
[= [~
150406 - 4er06 i
¥
. * 3e+06 B
1e+06
% ; 2e+06 ;
[t e KR K T ;
500000 & % 1 ol KooK Hokkes
o s O i e = et c B S al et I ik k%% po-0o0 0o 0020 o]
0 ol
64 4096 2.6214e+05 1.6777e+07 1.0737e+09 1 256 65536 16777e+t07 4.295e+09 1.0995e+12
SNR SNR

Figure 4.20: Quantization timing comparisons

Figure 4.20 compares the times taken for compressing and decompressing the lena
(left) and brain_small (right) MDD with one-pass zerotree coding and homogeneous band
quantization for given SNR values®). The SNR values are plotted logarithmically on the
horizontal axis and the time taken for this SNR is plotted on the vertical axis. The charac-
teristic peaks caused by the ZLib compression stream for homogeneous band quantization
are again clearly visible, in particular for brain_small which shows both peaks due to its
larger base type (i.e. in contrast to lena, brain_small could not be reconstructed without loss
in less than 17 bits per coefficient). Homogeneous band quantization is noticeably faster at
compression in either case, and dramatically faster at decompression with a curve almost
independent of the SNR (i.e. the time taken for ZLib decompression is very small compared
to the time taken for the inverse wavelet transformation). Whether this compensates the
inferior rates is for the user to decide.

4.3.3 Compression Stream Comparisons

So far, all zerotree variants used the adaptive arithmetic coder introduced in section 1.2.
The modular design also allows exchanging that compression stream for another one, how-
ever (or even a concatenation of streams). In this section, the performance of the adaptive
arithmetic coder vs. a ZLib compression stream will be examined for some test MDD.
Figure 4.21 shows size-snr comparisons (left) and the timing comparisons (right) for
the compression of the Daubechies4-transformed lena image with the adaptive arithmetic
coder vs. ZLib compression for both one-pass and two-pass zerotree coding. Regarding
the rate, the arithmetic coder performs better than the ZLib stream in both cases, where

8Note that these are SNR values, not SNR,, values, i.e. they belong to the reconstructed data in contrast
to figure 4.18 where the horizontal axis represents the quality parameter SNR,,.

4.3. LOSSY WAVELET COMPRESSION 131

3.43597e+10 T T T 8e+06 T T
one-pass, aith —+— one-pass, aith —+—
two-pass, aith - /'+ 76406 L two-pass, aith -
1.07374e+09 two-pass, zlib &1 / b two-pass, zlib &
/
%'
/ x B 6e+06 -
3.35544e+07 | | ¥ 1
[
[
[5e+06 -
1,04858e+06 - *B 1 °
x 5
7z #50 E 40406 -
[
32768 | Ak]
& 3e+06 -
I K| }'x/;(H K
1024 | 3 B o) Dx
2et06 £ 4
32 Bl e
E 1e+06 - ﬁM J
st
1 0
0 20 40 60 80 100 120 140 160 1 32 1024 32768 1.04858e+06 3.35544e+07 1.07374e+09
Relsize SNR(w)

Figure 4.21: Lena compression stream comparisons

the advantage is more pronounced for the one-pass coder. As far as timings go, ZLib
compression also takes noticeably longer than the adaptive arithmetic coder in both cases;
this is caused by the tiny alphabet size, which speeds up the adaptive part of the coder
enormously.

3.43597e+10

1.1259%+15

onépaas aith ‘—0— bnepasﬁ, ‘smh —0‘—
3.51844e+13 two-pass, arith - T 1 two-pass, arith -

two-pass, zlib -1 / 107374409 |- two-pass, zlib £ /+

1.09951e+12

3.43507e+10 [y
3.35504e+07 | xo]

1.07374e+09

3.35544e+07 1.04858e+06

SNR
SNR

1.04858e+06

32768
32768

1024

1024

¢

.
0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160
Relsize Relsize

s s s s s 2t

Figure 4.22: Brain and movie compression stream comparisons

Figure 4.22 shows the same size-snr comparison graphs for the brain_small (left) and
movie_small (right) MDD. We can see that in all cases the adaptive arithmetic coder works
better than the ZLib compression stream for the same type of zerotree coder, irrespective of
which zerotree coder performs better for this particular MDD. This is true for all test MDD,
thereby establishing the adaptive arithmetic coder as the universally best compression
stream for zerotree coding.

4.3.4 Error Propagation

As established in section 3.4.1, the quantization error of the wavelet coefficients can ac-
cumulate during synthesis and thereby become considerably larger. The worst case error

132 CHAPTER 4. EVALUATION AND RESULTS

propagation described there is typically by orders of magnitude larger than the actual one,
however — for instance for the lena image with the Haar wavelet, equation (3.42) states
a maximum error amplification factor of 3578 (D = 2, H = /2, and j = 9 scale levels).
Although this factor is much larger than the actual one, there is usually an amplification
of the maximum error. In order to find out typical amplification factors, the actual error
amplification of some of the test MDD was measured by zerotree residual coding with
RES,, = 10 (i.e. no quantized wavelet coefficient differed from its exact value by more than
10) and checking the maximum difference of the data reconstructed from these quantized
wavelet coefficients to the original data.

32 T T T T T T

S
NG :
A ~ X~
B [SRRRRRRRRRR Hoonnnnnnnnnnen
<
S
.’% 16 ¢ -
x Residual(w) +
Coiflet30 -
Coiflete 1
Datbechies20 @
Daubechiess -4~ |
* * " " LeastAsym12 &
LeastAsym20 —
8 1 1 1 1 QHmir ””<>””
3 4 5 6 7 8 9 10
Levels

Figure 4.23: Lena error propagation comparisons

Figure 4.23 shows error propagation comparisons for a selection of wavelets when ap-
plied to the lena image. The horizontal axis represents the number of scale levels used,
the vertical axis the maximum residual per cell in the reconstructed data. The quality
parameter RES,, used for the wavelet coefficients is represented by the dots at vertical
position 10. It is clearly visible that the error in the reconstructed data is larger than that
of the quantized coefficients, so the error was amplified during synthesis — however nowhere
near as much as the theoretical limit of 3578, but only by an average factor of 2. We can
also see that the error grows with the number of scale levels for the most part, also in
accordance with equation (3.42). There is no visible correlation between the filter length
and the error magnitude, however, as e.g. for 10 scale levels the Daubechies 4-tap wavelet
produces the largest error, followed by the Daubechies 20-tap wavelet, whereas the Coiflet
30-tap wavelet has the smallest error there.

Figure 4.24 shows the error propagation comparisons for the tomo_small (left) and
brain_small (right) MDD. We can see that in both cases the average is somewhat higher

4.3. LOSSY WAVELET COMPRESSION 133

32 T T T T T T 64
e
> [2 * ® L - 4
o L
P ¥
o B & & & #);,,,
I Rl g ¥ X X X
g T o Ty i] g] il
o L =] 0
16
4 4
14 Residual(w) + 14 Residual(w) +
Coiflet30 ----k--- Coiflet30 -----
Coifleté & 16 - Coifleté &
Daubechies20 - @ Daubechies20 - @
Daubechi A Daubechiest -4
* + + * +LB§S{AS/H$1$2 - LeastAsyml12 -4
LeastAsym20 —+— + + + + HeastAsym20 —=—
QHaar -0+~ QHaar ----o---
8 h 8 h
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Levels Levels

Figure 4.24: Tomogram and Brain error propagation comparisons

than it was for lena, which is again as expected from equation (3.42) due to the higher
dimensionality. In particular the highest error is now magnified by a factor of approximately
3. The reason why the curves are constant after 7 respectively 6 scale levels is that these two
MDD have shorter spatial extents than lena, so fewer scale levels are possible; attempting
to code with more scale levels than physically possible reverts to coding with the maximum
number of scale levels, hence the curves are constant in this area.

4.3.5 Predictor Usage

In contrast to the other compression techniques, wavelets can only be combined with
interchannel predictors (see section 3.5). When the two test MDD with structured base
types (cnig, movie_small) are preprocessed with the delta predictor, using green to predict
the other two colours, the differences in the size-snr curves are very small. When comparing
the relsize for lossless reconstruction with the Haar wavelet, the relsize is slightly higher
for cnig (119.8 instead of 111.9 without the predictor) and slightly lower for movie_small
(111.744 instead of 114.512), which mirrors the behaviour found in lossless compression
(see section 4.2.2.2).

In the special case of lossy compression of RGB data (images, video), it is common
practice to transform the channels (e.g. the RGB — YUV transformation introduced in
section 3.5.1) and encode the resulting channels with different quality levels (typically
the highest quality is used for the Y channel [60]), due to colour sensitivity of the human
eye. Similar techniques can be used with wavelets and interchannel prediction, e.g. different
SNR,, values for each channel. However, the evaluation of the results is a problem of image
perception (and therefore highly application-specific), whereas this work concentrates on
generic solutions, therefore this approach will not be analysed in more depth here; the
interested reader is referred to [61], for example.

134 CHAPTER 4. EVALUATION AND RESULTS

4.3.6 Is Lossy Good Enough?

Ideally, compression is lossless, but unfortunately Shannon’s entropy equation (1.1) sets a
hard limit on the compression rate achievable without loss. This rate can be improved by
removing correlations via a model layer, e.g. by predictors, but there rarely is a model that
allows a reduction of the rate by orders of magnitude; this is true especially for data that
contains noise, because noise is random and truly random symbols do not compress at all®.
Since this noise doesn’t contain any information, a loss of the noise during compression
can’t lose any information either, so the compression is logically lossless, despite the physical
loss of detail information. Therefore lossy compression is highly attractive if a certain noise
floor level can be specified for the data.

Whether such a noise floor exists depends on the data; most MDD that are attractive
for wavelet compression belong to the following categories:

sampled analogue data: most raster images, scientific measurements and similar types
fall into this category, as do all the test MDD. The presence of noise is very likely
in this kind of data, as can also be seen in figure 3.8, which means that loss up to a
certain threshold is perfectly acceptable;

simulation data: numerical simulations typically have to solve partial differential equa-
tions and since there are no scalable, stable, exact solutions to this kind of problem,
this is done using iterative approximations with a certain quality level, much like
the SNR,, and RES,, parameters used in the compression engine. This implies the
presence of a noise floor inversely proportional to the exactness of the solution.

Therefore, lossy compression can in many cases be good enough indeed, although using
it efficiently is considerably more complex than lossless compression is. What degree of loss
is acceptable is highly application-dependent, as residals and signal-to-noise ratios perfectly
acceptable for images may be totally unacceptable for numerical simulation data, or quality
requirements in medical images may be considerably higher than quality requirements in
multimedia images.

Furthermore, the quality measure used plays an important role, the most useful ones
being SNR and RES. The SNR sets a limit on the average difference of cells in the original
data and the reconstructed lossy data, whereas the RES sets a limit on the maximum
difference. Picking the more restrictive quality RES and assuming a signal-to-noise distance
of ng bits (i.e. the ratio of the largest value to the smallest relevant value is 2"), we can
achieve the following relsize for the brain_small, temperature and dkrz4d MDD with Haar
and Daubechies 4-tap wavelets (using one-pass zerotree quantization again):

9A direct consequence of equation (1.1), as by definition random numbers are uncorrelated (i.e. there
is no data model) and have the same probability per symbol.

4.3. LOSSY WAVELET COMPRESSION

Wavelet | ng | brain_small | temperature | dkrz4d
Haar 8 35.8862 15.0835 22.7958
10 46.6676 22.674 29.8596

12 56.9473 29.9099 33.2047

16 39.8643 49.1803

Daub4 | 8 44.2029 14.3602 23.045
10 56.5514 20.9524 28.5096

12 68.2509 28.6993 35.4545

16 42.2255 48.3789

135

For brain_small, only ny, = 8 with the Haar wavelet shows a small improvement over
the best lossless relsize of 37.0645 (see section 4.2.1.2). For the floating point MDD, on
the other hand, rates can be improved considerably within reasonable noise floor limits,
which can be seen in the following table, where the best relsize of the previous table is set
in relation to the best relsize achievable with lossless compression and optional predictors

(see section 4.2.2.1).

ns | brain_small | temperature | dkrz4d
8 0.9682 0.2795 0.4103
10 1.2591 0.4078 0.5132
12 1.5364 0.5585 0.5977
16 0.8217 0.8709

1024

" y

1k

0.03125 -

Residual

0.000976562

3.05176e-05

Coiflet1s —i—

Coifleté -
Daubechies -1

Daubechiess --@---
LeastAsym12 ----&

LeastAsym20 -4 4
LeastAsym8 —v—

B

9.53674e-07

SNR(w)

I I I I I
256 65536 1.6777e+07 4.295e+09 1.0995e+12 2.8147e+14

0.03125 -

Residual

0.000976562 -

3.05176e-05 |-

9.53674e-07
0

Coiflet1s ——

Coiflet6 ----%--

Daubechies - |

Daubechiess -~--@--
LeastAsym12 -4
LeastAsym20 -4

LeastAsym8 —v—]

1 1 1
10 20 30

Relsize

1 i
60 70

Figure 4.25: Temperature quality-residual and size-residual graphs

80

So even with n, as high as 16, the relsize of temperature and dkrz4d is lower with
lossy compression than it is with lossless compression. For ng = 10, 12 the size of the data
compressed with lossy techniques is around 40-60% that of using lossless techniques for
these MDD. So provided a signal-to-noise distance of 10-12 bits is acceptable, the rates
for lossy compression can improve upon the lossless ones considerably, even with the more
restrictive RES quality measure. Figure 4.25 shows quality-residual (left) and size-residual

136 CHAPTER 4. EVALUATION AND RESULTS

(right) graphs for temperature with one-pass SNR zerotree coding, which can be used
to determine what quality parameter SNR,, is needed for a desired maximum residual
(quality-residual graph) and what relsize can be achieved with that residual (size-residual

graph).

SNR,, = 1000 (16.23%) SNR,, = 10000 (26.7%)

Figure 4.26: Lossy coding of Brain

Figure 4.26 shows the brain_small MDD coded at different quality levels (10 < SNR,, <
10000). The resulting data cubes were visualized with the RasDaMan client application
rView [19] using volume rendering. The lowest quality image (SNR,, = 10) has noticeable
compression artefacts, but the basic shape can still be recognized and the compressed data
has a relsize of only 1.59%. There is hardly any visible difference between the higher quality
images or the original in figure 4.1 on page 105, so for visualization purposes a compression
with SNR,, = 100 is sufficient, which yields relsize 7.61% and is therefore about five times
smaller than the best lossless size.

4.3. LOSSY WAVELET COMPRESSION 137

4.3.7 Conclusions for Lossy Compression

Lossy compression is considerably more complex to handle than lossless compression due to
the new concept of distortion and the parameters required to control it. The size-snr curves
displayed in section 4.3.1 allow weighing compressed sizes against the distortion introduced
by loss for all the test MDD and can — for example in combination with SNR,,-SNR and
SNR,,-size tables for zerotree coding — be used to determine what SNR,, one has to use
to be able to reconstruct the data with the desired SNR or relsize. It is important to
stress the difference between SNR,, and RES,,, the quality parameters used for encoding
the wavelet coefficients, and SNR and RES which compare the original data with the lossy
reconstruction. In most cases RES > RES,, i.e. errors in the wavelet coefficients are
amplified during wavelet synthesis, in particular for high dimensionality or a large number
of scale levels, although the actual error amplification measured is by orders of magnitude
smaller than the maximum theoretical amplification calculated in equation (3.42). This
was studied in section 4.3.4, where typical amplification factors between 2 and 3 were
measured. Common observations from the size-snr graphs in section 4.3.1 are

e often the differences between the rates achieved with the various wavelets are very
small, in particular for lena, cnig, temperature and dkrz4d. Long filters typically
only have clear advantages for very smooth data and low quality;

e on average the best size-snr ratio is achieved by the Haar wavelet, in particular for
high quality. Even when the Haar wavelet is not the best one, it is usually not far
from the optimum, at least for high quality. It performs particularily well for sparse
or noisy data (tomo_small, brain_small). Overly long filters (more than 12 taps)
hardly ever perform better than shorter ones;

e although lossless reconstruction is possible in most cases, the rates are always inferior
to those of a dedicated lossless compression technique like ZLib with appropriate
predictors, even for floating point arrays;

e the time taken for zerotree-encoding Haar-transformed data is noticeably higher than
it is for the other wavelets, in particular for high-dimensional spaces (dkrz4d), due
to the current implementation of the aggregation code;

e with the exception of the Haar wavelet, the time taken for zerotree encoding and
decoding is comparable, they are not largely asymmetrical like in ZLib-based tech-
niques;

e the maximum throughput values measured for zerotree coding at SNR,, = 4096 are
below the bandwidth of standard 10MBit/s Ethernet for all test MDD (¢, < 520,
tq < 1039). This is an important observation for transfer compression in section 4.4.

The comparison of the three quantization approaches in section 4.3.2 showed that the
two zerotree coding variants achieved the best overall size-snr ratios, where for some test

138 CHAPTER 4. EVALUATION AND RESULTS

MDD the one-pass coder performed better (lena, cnig, movie_small), for others the two-pass
coder (tomo_small, brain_small) and for the rest both had almost identical performance.
Judging by the test MDD, the two-pass coder is superior for sparse data, but more tests
need to be made for any final statements in this respect. Homogeneous band quantization
is far behind in terms of size-snr ratio'®, but is much faster, in particular for decompression;
on the other hand, it must be noted that homogeneous band quantization was used in its
simplest form, with an identical number of bits and a uniform linear quantizer for all bands,
and that this can be improved with a sophisticated statistics module like in [12, 13]. It is
unlikely that this will better the rates achievable with zerotree coding, but it might provide
a faster alternative with comparable rates.

Regarding the choice of the compression stream to use for zerotree coding, the default
adaptive arithmetic coder proved to be the best alternative in section 4.3.3, being both
faster and achieving better rates than the ZLib stream it was compared with; this allows
a clear recommendation to use the default compression stream and effectively reduces the
parameters of the wavelet engine by one.

The wavelet engine is by far the most complex module of the compression engine and
needs many more parameters than its lossless counterpart. Whether it offers advantages
over lossless compression depends mostly on the kind of data it is applied to and what
amount of distortion is acceptable for that data. Section 4.3.6 gave some examples of
how the wavelet engine can provide results far superior to the rates possible with any
lossless compression system currently available in the compression engine, depending on
the level of distortion, and how distortion does not necessarily mean loss of information
as long as the distortion is within the data’s noise floor. The question of when to use
wavelets is therefore highly application-specific, and can not be answered in general without
detailed information on acceptable distortion levels. Even then some experimentation is
required regarding what wavelet filter and quantization technique to use for optimum rates,
because amplification of the coefficient quantization error makes it impossible to predict
the error of the reconstructed data from the quantization error apart from the worst case
factor in equation (3.42), which is typically by orders of magnitude larger than the actual
amplification factor.

4.4 Transfer Compression

Besides savings in storage space, compression can also speed up the entire DBMS due
to reduced communication- and 10 times. As shown in section 3.7, it depends on the
compression and decompression times (., t4) as well as the size of the uncompressed data
m, the compression ratio r and the bandwidth B of the communication channel whether
the use of compression speeds up total system performance. Let again the abbreviation
teq stand for either ¢. + ¢, for sequential compression and decompression or max(t.,ty) for
parallel operation. Then transfer compression improves performance if t.; < %(1 —7), or

10With the exception of very high quality, where it sometimes manages to beat one, but never both
zerotree coders.

4.4. TRANSFER COMPRESSION 139

t— > T is the throughput of the compression and decompression modules involved in
the transfer compression; a compression algorithm can therefore be ruled out for transfer
compression completely and irrespective of its relsize if its throughput for compression or
decompression is smaller than the communication channel’s bandwidth — or in other words:
if compression and decompression take longer than transferring the uncompressed data
over the communication channel, transfer compression with this algorithm can’t benefit
system performance regardless of the compression rate it achieves. Thus the throughput
values listed in sections 4.2 and 4.3 can be used to filter out techniques feasible for transfer
compression. Another logical filtering step is ignoring all techniques which didn’t compress
the data at all.

We will now check which techniques have potential for transfer compression, assuming a
standard 10MBit/s (= 1250kB/s) ethernet network. As noted in section 4.3.7, throughput
values for all lossy wavelets are lower than that on the reference machine (at least with
zerotree quantization), so lossy wavelets can be ruled out entirely for transfer compres-
sion with the given hardware (this statement will eventually have to be reevaluated once
the hardware has improved sufficiently). This leaves only lossless compression with the
following candidates:

RLE: the throughput is considerably higher than the ethernet bandwidth, but it achieves
only compression for tomo_small and brain_small, so RLE transfer compression should
only be attempted for those two test MDD;

ZLib: the throughput is higher than the ethernet bandwidth for all test MDD but temper-
ature and dkrz4d; closer inspection reveals that only the transfer times for tomo_small

and brain_small can improve with transfer compression because relsize is too large
for the other MDD.

SepZLib and SepRLE are also candidates for movie_small, but can be ruled out because
for both of them ¢. + % > mB (the time for transferring the raw data is 675313us,
SepRLE takes 840195us and SepZLib takes 1038384 us for compression, decompression and
data transfer). The same is true for all Haar wavelets, leaving only those two compression
techniques above as candidates for transfer compression, with tomo_small and brain_small
as test MDD; predictors will be ignored at this point. Because other overhead is added
to the pure (de)compression and transfer times, there is no guarantee that a theoretically
advantageous technique will also perform well in real life, but the theoretical threshold is
a necessary minimum requirement for improvements.

The following table contains the transfer compression times for tomo_small, brain_small,
tomo_full and brain_full when using RLE or ZLib for transfer compression in RasDaMan.
The tomo_full and brain_full MDD were originally used to create tomo_small and
brain_small by scaling them to half their size in each dimension and are included in these
measurements to increase the data volume for the measurements by a factor of 8 and
thereby reduce the impact of not compression-related DBMS overhead on the measure-
ments. Timings are in milliseconds:

140 CHAPTER 4. EVALUATION AND RESULTS
Type tomo_small | brain_small | tomo_full | brain_full
NoComp 1597 1218 13456 8985
RLE 990 841 7905 5585
ZLib 3240 1933 17280 11851

Obviously, RLE improves the total response time in all cases for these MDD, saving
30-40% of the transfer time for the uncompressed data. ZLib slows down the total response
time, but the relative slowdown is considerably smaller for the full MDD than it is for the
scaled down versions.

Due to the symmetry of the compression engine, it is also possible to transfer tiles that
were stored compressed at the server and are fully contained in the query box directly to
the client, so there is no compression overhead, only decompression at the client. Under
these conditions, ZLib can potentially speed up the total response time for all test MDD
and RLE once again for tomo_small and brain_small because its decompression throughput
is high enough and it manages to compress these two test MDD. In this case, database
IO will also be sped up, because the compressed tiles are smaller and therefore take less
time to load from disc, but since IO throughput is by orders of magnitude larger than the
standard ethernet bandwidth, this effect is small compared to the improved communication
times. The following table shows the total transfer times when the data was already stored
compressed in the database; timings are again in milliseconds:

Type lena | cnig | tomo_small | brain_small | movie_small | temperature | dkrz4d
NoComp | 427 | 929 1597 1218 1080 4494 5350

RLE 818 765

ZLib 388 | 831 T 719 856 3361 4742

In this case, the situation is reversed: not only does ZLib improve total response times
in all cases due to its asymmetric compression/decompression times (see section 4.2.1.2), it
even beats RLE because its lower transfer time caused by a better relsize has more effect on
the total time than its lower decompression throughput. Therefore it can be recommended
to store all data compressed with ZLib by default, provided the data is read more often
than written to, since decompression overhead was outweighed by improved transfer times
for all test MDD.

Chapter 5
Conclusions and Future Work

The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let others follow it who can!

Let them a journey new begin,
But I at last with weary feet

Will turn towards the lighted inn,
My evening-rest and sleep to meet.

J.R.R. Tolkien, The Lord of the Rings

Multidimensional Discrete Data appears in many different application areas, including
such diverse fields as multimedia, medicine or scientific computing, each with specialized
tools and storage formats. The array DBMS RasDaMan unites generic multidimensional
arrays under the MDD concept and provides common database services like transaction
management and a query language. Due to the enormous size typically found in MDD,
compression becomes an important component to reduce storage requirements and poten-
tially improve system performance by also reducing communication- and 10O times.

In this thesis, the requirements for an MDD compression engine were analysed and used
to develop a modular design introduced in chapter 3, including a dynamic parameter system
for flexible configuration of the system’s various components. The engine has a standard
two-layer architecture found in most advanced compression techniques, with a model layer
exploiting MDD properties and a compression layer for the actual compression of the
transformed data with tranditional compression techniques. The work concentrated on
the development of model layers for MDD compression with different levels of complexity,
in particular

Channel Separation for structured base types, i.e. compressing values for each channel
separately instead of using the raw tile format, which interleaves channels;

Predictors which calculate approximate values for some cells and express these cells’ val-
ues relative to the approximate values (deltas). If the predictor matches the data

141

142 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

model, most of these deltas will cover a very small range around 0, which allows more
efficient compression. Approximate values can be calculated using spatially neigh-
bouring cells (intrachannel predictors) or neighbours across channels (interchannel
predictors);

Wavelets which transform the channels individually into multiresolution representations
with coarse approximations and various levels of detail information which allow suc-
cessively refining these coarse approximations until the original data can be recon-
structed. Provided the wavelet base matches the data well, most of the detail infor-
mation will be sparse or near sparse and allow far more efficient compression than the
untransformed data, in particular lossy compression where small detail coefficients
are zeroed to further improve compression rates.

On the subject of wavelets, the thesis concentrated on the generalization of multireso-
lution wavelet transformations and the efficient quantization of the resulting wavelet coef-
ficient arrays. This led to a wavelet engine architecture consisting of three major compo-
nents, transformation, quantization and compression, all of which can be exchanged freely
due to modular design. The quantization problem gave birth to the Generalized Zerotree
described in section 3.4.3, a hierarchical structure exploiting relationships between wavelet
coefficients on neighbouring scale levels, which hitherto existed only in specialized imple-
mentations for 2 and 3 dimensions; the older and simpler homogeneous band quantization
is still available as a less expensive but also less efficient alternative.

The thesis closed with an evaluation of the performance of the compression engine’s
major components on a set of seven test MDD from different application areas, covering
various base types and dimensionality between 2 and 4 in chapter 4. For lossless compres-
sion, techniques based on the standard compression library ZLib provided the best rates,
which could often be improved considerably by the application of predictors or channel
separation. For the lossy wavelet engine, comparisons were made between the different
wavelet filters, the quantization types and the compression streams. In contrast to the
lossless case, there is usually no clear winner which performs equally well on all test MDD,
neither is it possible to guarantee a level of reconstruction quality without excessive re-
strictions on the quality of the coefficient quantization because of error amplification in the
wavelet synthesis stage, so experimentation is required to achieve optimum results. The
results measured for lossy compression provide valuable heuristics for the lossy compression
of various MDD categories, however. They also prove that the rates possible with lossless
compression can be improved considerably in the lossy case, depending on what distortion
levels are acceptable.

But especially in compression, work is never truly finished. Topics for future work can
be divided into the two major categories Compression and Integration:

Compression: this area concerns improvements of the compression engine as such, inde-
pendent of the DBMS; this includes the following issues:

e improve the efficiency of the adaptive arithmetic coder, e.g. based on the work
in [37);

143

e add more predictors, for example a RGB « YUV transformation for RGB data;

e add more specialized compression techniques, for instance an approach for the
lossless compression of floating point values described in [22];

e improve boundary treatment for wavelet transformations. The current periodic
approach can introduce singularities at the boundaries which cause large detail
coefficients and compromise efficiency, in particular for low rates. Promising
solutions are the mirror boundary condition or the use of shorter filters at the
boundaries;

e add more wavelet transformations, for instance biorthogonal wavelets often used
in image compression [51], or wavelet packets [36];

e improve homogeneous band quantization via a sophisticated statistics module
and more specialized quantizers like in [12, 13] to obtain a less expensive alter-
native to zerotree coding with comparable rates;

e improve the zerotree aggregation code to address the speed penalties measured
in particular for encoding Haar-transformed wavelet coefficients. Another ze-
rotree improvement is the addition of some newer tree alphabets, for instance
the one in [10];

e add a rate or relsize termination criterion to the zerotree coder. This would allow
encoding an MDD by size rather than by quality, but will require extensions of
the compression streams to get meaningful information about the compressed
size while the stream is still active;

e use different compression streams for dominant and subordinate pass in zerotree
coding for better compression rates;

e add alternative wavelet quantization modules, for example a generalized SPTHT
[46].

Integration: this area concentrates on improving the integration of the compression en-
gine into the DBMS. That means in particular extending the query optimizer to
exploit compression where possible, such as

e smart materialization of compressed data by exploiting properties of the com-
pression technique used. That means e.g. only decompressing those channels
that are actually needed and ignoring those that will be discarded later on via
type projections, if the compression technique does channel separation. Another
example would be limiting the reconstruction quality or resolution, for instance
when the data will be scaled down, which can easily be achieved for lossy wavelet
compression techniques with zerotree coding;

e cxecute operations directly on compressed tiles without an explicit
decompression-compression cycle. This is usually only feasible for very sim-
ple compression types like RLFE; but some operations are possible in far more

144

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

complicated cases, for example multiplying every cell in a zerotree-coded MDD
with a constant value can be done by the compression engine in just one op-
eration, namely multiplying the initial zerotree threshold value stored as meta
data with this constant value;

add a cost model for compression to the query optimizer. This would allow
automating the use of transfer compression, or the optional internal use of com-
pression for communication between parallel nodes, among other things.

Bibliography

1]

[10]

[11]

P. Baumann, P. Furtado, R. Ritsch, N. Widmann: The RasDaMan Approach to Multi-
dimensional Database Management. Proceedings of the SAC’97, San Jose, California,
1997

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann: The Multidimensional
Database System RasDaMan. Proceedings ACM SIGMOD International Conference
on Management of Data, 1998

P. Baumann: A Database Array Algebra for Spatio-Temporal Data and Beyond.
NGITS 99, Zikhron Yaakov, Israel, 1999 (Springer LNCS 1649)

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann: Spatio-Temporal Re-
trieval with RasDaMan. Proc. Very Large Data Bases (VLDB), Edinburgh, 1999, pp.
746-749.

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann: Cross-Dimensional
Sensor Data Management. Proceedings of the Fourth International Airborne Remote
Sensing Conference and Exhibition, 1999

C.F. Barnes, E.J. Holder: Successive Approximation Quantization with Generalized
Decoding for Wavelet Transform Image Coding. 27th Asilomar Conference on Signals,
Systems and Computers, 1993

R. Bayer: The Universal B-Tree for Multidimensional Indexing: General Concepts.
World-Wide Computing and its Applications '97 (WWCA ’97), Tsukuba, Japan, 1997

L. Bottou, P. Haffner, P. Howard, P. Simard, Y. Bengio, and Y. LeCun: High Quality
Document Image Compression with DjVu. Journal of Electronic Imaging, 1998

R. Cattell: The Object Database Standard: ODMG 2.0. Morgan Kaufmann Publishers,
San Mateo, California, USA, 1997

Y. Chen, J. Shapiro: Three-Dimensional Subband Coding of Video Using the Zero-Tree
Method. SPIE Symposium on Visual Communications and Image Processing, 1996

7. Chen, P. Seshadri: An Algebraic Compression Framework for Query Results.

145

146

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[24]

[25]

[26]

BIBLIOGRAPHY

C. Chrysafis, A. Ortega: Context-Based Adaptive Image Coding. 30th Asilomar Con-
ference on Signals, Systems and Computers, 1996

C. Chrysafis, A. Ortega: Efficient Context-Based Entropy Coding for Lossy Wavelet
Image Compression. Data Compression Conference (DCC), Snowbird, Utah, 1997

C. Chrysafis: Wavelet Image Compression Rate Distortion Optimizations and Com-
plexity Reductions. PhD thesis, Faculty of the Graduate School, University of Southern
California, 2000

C.K. Chui: An Introduction to Wavelets. Academic Press Inc, 1992

W.P. Cockshott, D. McGregor, N. Kotsis, J. Wilson: Data Compression in Database
Systems. DEXA Workshop on Advanced Database Applications 98

G.V. Cormack: Data Compression on a Database System. Communications of the
ACM, Dec.1985, Volume 28

I. Daubechies: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in
Applied Mathematics, CBMS 61, 1992

A. Dehmel: Visualizing Multidimensional Raster Data with rView. Database and Ex-
pert Systems Applications (DEXA) 2000, Springer-Verlag, Heidelberg

A. Dehmel: Designing a Compression Engine for Multidimensional Raster Data.
Database and Expert Systems Applications (DEXA) 2001, Springer-Verlag, Heidel-
berg

A. Dehmel: Encoding Multidimensional Wavelet Coefficients Using the Generalized
Zerotree. 35th Asilomar Conference on Signals, Systems and Computers, 2001

V. Engelson, P. Fritzson, D. Fritzson: Lossless Compression of High-Volume Numeri-
cal Data from Simulations. Linkoping Electronic Articles in Computer and Information
Science ISSN 1401-9841, Vol. 5 (2000): nr 011

A. Fournier et. al.: Wawvelets and their Applications in Computer Graphics. SIG-
GRAPH 95 Course Notes

P. Furtado: Storage Management of Multidimensional Arrays in Database Manage-
ment Systems. PhD thesis, Technical University of Munich, 1999.

M. Griebel, F. Koster: Adaptive Wavelet Solvers for the Unsteady Incompressible
Navier-Stokes Equations. J. Malek, M. Rokyta (Eds.), Advances in Mathematical
Fluid Mechanics, Springer Verlag, also as Preprint No. 669 (2000), University of Bonn

HDF homepage: http://hdf.ncsa.uiuc.edu/

BIBLIOGRAPHY 147

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

D.A. Huffman: A Method for the Construction of Minimum Redundancy Codes. Pro-
ceedings of the IRE, 40:1098-1101, 1951

[. Thm, S. Park: Wawvelet-Based 3D Compression Scheme for Very Large Volume Data.
Graphics Interface '98, pp107-116, Vancouver, Canada, 1998

The International Organization for Standardization (ISO): Database Language SQL.
ISO 9075, 1992(E)

JBIG Committee: Coding of Still Pictures (JBIG, JPEG) ISO/IEC JTC 1/ SC 29 /
WG 1, N 1359, July 1999.

B.J. Kim, Z. Xiong, W.A. Pearlman: Low Bit-Rate, Scalable Video Coding with 3D
Set Partitioning in Hierarchical Trees. IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 10, 2000

F. Koster, M. Griebel, N. Kevlahan, M. Farge, K. Schneider: Towards an Adaptive
Wavelet-Based 3D Navier-Stokes Solver. E. Krause, E. Hirschel (Eds.) Notes on Nu-
merical Fluid Mechanics (1998)

Lena Soderberg, Playmate of the Month, Playboy Magazine, November 1972

W.E. Lorensen, H.E. Cline: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. ACM Computer Graphics, Volume 21, Number 4, 1987

S. Mallat: A Wavelet Tour of Signal Processing. Academic Press 1999 (2nd edition)

F.G. Meyer, A. Averbuch, J.O. Stromberg, R.R. Coifman: Fast Wavelet Packet Image
Compression. Data Compression Conference (DCC) 98, Snowbird, Utah, 1998

A. Moftfat, R.M. Neal, I.H. Witten: Arithmetic Coding Revisited. ACM Transactions
on Information Systems, Vol. 16, No. 3, 1998

PCL 5 Printer Language Technical Reference Manual. Order No. 5961-0509, Hewlett-
Packard Co., P.O. Box 1145, Roseville, CA 95678, 1992

S.M. Perlmutter, K.O. Perlmutter, P.C. Cosman: Vector Quantization with Zerotree
Significance Map for Wavelet Image Coding. 29th Asilomar Conference on Signals,
Systems and Computers, 1995

Charles A. Poynton: Frequently — Asked Questions about Color.
http://www.inforamp.net/~poynton/ColorFAQ.html

G. Randers-Pehrson et al.: PNG (Portable Network Graphics) Specification, Version
1.2. http://www.libpng.org/pub/png/pngdocs.html, July 1999

R. Ritsch: Optimization and Evaluation of Array Queries in Database Management
Systems. PhD thesis, Technical University of Munich, 1999.

148

[43]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY

P. Roland, J. Young, T. Lindeberg, G. Svensson, J. Frederiksson, H. Halldorsson, L.
Forsberg, T. Risch, P. Baumann, A. Dehmel, K. Zillers: A Database Generator for
Human Brain Imaging. TRENDS in Neurosciences, Vol.24, No.10, October 2001

L. Rosenblum et al: Scientific Visualization — Advances and Challenges. Academic
Press Ltd., 1994

A. Said, W.A. Pearlman: An Image Multiresolution Representation for Lossless and
Lossy Compression. SPIE Symposium on Visual Communications and Image Process-
ing, Cambridge, MA, 1993.

A. Said, W.A. Pearlman: A New Fuast and Efficient Image Codec Based on Set Par-
titioning in Hierarchical Trees. IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 6, June 1996

K. Sayood: Introduction to Data Compression. Morgan Kaufmann Publishers, Inc.,
San Francisco, CA, 1996.

C.E. Shannon: A Mathematical Theory for Communication. Bell System Technical
Journal, 27:379-423, 623-656, 1948

J. Shapiro: Embedded Image Coding using Zero-Trees of Wavelet Coefficients. IEEE
Transactions on Signal Processing, pp. 3445-3462, 1993

J. Shapiro: Smart Compression using the Embedded Zerotree Wavelet (EZW) Algo-
rithm. 27th Asilomar Conference on Signals, Systems and Computers, 1993

A.N. Skodras, C.A. Christopoulos, T. Ebrahimi: JPEG2000: The Upcoming Still Im-
age Compression Standard. Proceedings of the 11th Portuguese Conference on Pattern
Recognition (RECPA), 2000

N. Strobel, S.K. Mitra, B.S. Manjunath: Progressive-Resolution Transmission and
Lossless Compression of Color Images for Digital Image Libraries. Image Processing
Laboratory University of California, Santa Barbara 93106.

TIFF Revision 6.0 Specification, p42; Aldus Corporation, Seattle, 1992
J.R.R. Tolkien: The Lord of the Rings. George Allen and Unwin, London, 1954-1955

A. Trott, R. Moorhead, J. McGinley: Wavelets Applied to Lossless Compression and
Progressive Transmission of Floating Point Data in 3D Curvilinear Grids. IEEE Vi-
sualization, 1996.

G. Uytterhoeven: Wauvelets: Software and Applications. PhD thesis, Department of
Computer Science, K.U. Leuven, 1999

BIBLIOGRAPHY 149

[57]

[67]

V.D. Vaughn, T.S. Wilkinson, L.S. Kalman: Multispectral Image Compression for
Future LANDSAT Remote Sensing Systems. 27th Asilomar Conference on Signals,
Systems and Computers, 1993

J.D. Villasenor, B. Belzer, J. Liao: Wavelet Filter Evaluation for Image Compression.
IEEE Transactions on Image Processing, 1995

J.S. Vitter, M. Wang: Approzimate Computation of Multidimensional Aggregates of
Sparse Data Using Wavelets. SIGMOD 99, Philadelphia PA.

G.K. Wallace: The JPEG Still Picture Compression Standard. Communications of
the ACM No.4, Vol 34, Apr 1991.

A.B. Watson, G.Y. Yang, J.A. Solomon, J. Villasenor: Visual Thresholds for Wavelet
Quantization Error. SPIE Proceedings Vol. 2657, The Society for Imaging Science and
Technology, 1996

T. Westmann, D. Kossmann, S. Helmer, G. Moerkotte: The Implementation and
Performance of Compressed Databases. Reihe Informatik 3 / 1998

LLH. Witten, R.M. Neal, J.G. Cleary: Arithmetic Coding for Data Compression. Com-
munications of the ACM, June 1987, Vol 30, Number 6

J. Ziv, A. Lempel: A Universal Algorithm for Data Compression. IEEE Transactions
on Information Theory, IT-23(3), 1977

J. Ziv, A. Lempel: Compression of Individual Sequences via Variable-Rate Coding.
IEEE Transactions on Information Theory, IT-24(5), 1978

Z. Zhu, R. Machiraju, B. Fry, R. Moorhead: Wauvelet-Based Multiresolution Repre-
sentation of Computational Field Stmulation Datasets. Proceedings of the 8th IEEE
Visualization Conference, 1997

ZLib homepage: http://www.info-zip.org/pub/infozip/z1ib/

150 BIBLIOGRAPHY

Appendix A

Proof for Lossless Haar Wavelets

This part of the appendix proves the assertion stated in section 3.3.4.1 that lossless
Haar transformations for integer types are possible without having to use larger inte-
gers to hold either the average coefficients ¢ = %(C%Z + bt +1) or the detail coefficients

' %(C;Z —af +1) It is possible to solve this problem for integer types by storing
7 = (5:(2¢)) + 0422) mod 28 and d = (2d}) mod 28, where s,(x) performs a bitwise,
sign-preserving shift-right' of #, B is the number of bits in the base type and o4 = 0 if 2d?
can be represented in B bits or o4 = 1 otherwise. Then the original values can be restored
using ' = (¢ + s,(d"? +1)) mod 28 and cf; = (¢] — 5,(d”})) mod 2”. Note that this
special coding format is only used for integer types, whereas for floating point types CZ and
d{ are used — in this case, lossless transformation can no longer be guaranteed if either
value can’t be represented exactly in the machine’s precision, however!

Regarding lossless reconstruction despite the s, () operator in ¢ f , we can first establish
that this can only involve loss if ¢} is even and cél +1 1s odd or the other way around. In
these cases, we can write the odd coefficient as the sum of the nearest smaller even value plus
1. Because a wavelet transformation is a linear operation (i.e. given two sequences (s;), (¢;),
(VV(Sz +t;))(a,b) = (Ws;)(a,b) + (Wt;)(a, b)), we can express the wavelet transformation

of &, c%;:ll as the wavelet transformation of the two nearest smaller even values (where

the sr() operator is lossless) plus the wavelet transformation of the pair (1,0) in case
A was odd or (0,1) in case At +1 was odd. Therefore proving the correctness of the
above encoding format for values (0,1) and (1,0) is sufficient to prove correctness for all
possible pairs of even/odd values. For input values (0,1) we get ¢ = s,(1) = 0 and
dd = —1 Reconstruction is done using ;" = ¢ + s,(d” + 1) = 0 +s.(-14+1) =0
and i), = ¢ — s,(d7) = 0 — s,(—1) = 1, which are the correct input values. For
1nput values (1,0) we get ¢? = sr(l) = 0 and d? = 1; the reconstructed values are
A =0+5(1+1)=1and cj21+1 — $,(1) = 0, which are the correct input values too,
thereby proving the encoding to be correet.

!The operator s,.(x) is used instead of a division plus floor/ceiling rounding, because they have dif-
ferent meaning for negative numbers, i.e. dividing the integer number -1 by 2 has the result 0, whereas
sp(—=1) = —1.

151

152 APPENDIX A. PROOF FOR LOSSLESS HAAR WAVELETS

Regarding the fact that de can become too large to be represented in B bits, we have
to analyse what happens in case of an overflow: positive values too large to be represented
in B bits (i.e. 2571 < 2d/ < 2P) appear as negative numbers which are by 27 smaller
than the actual value, whereas negative values too small to be represented in B bits (i.e.
—2B < ng < —2B71) appear as positive numbers which are by 28 larger than the actual
value. For instance the value 200 appears as 56 when using a signed 8 bit representation.
This means that in case of an overflow d” = 2d} & 2% and therefore s,(d") = d} 4+ 251
however, when only the B least significant bits are of interest like in this case, adding
or subtracting 287! has the same effect because (z + y) mod 28 = (z — (28 — y)) mod 28
and therefore (z + 287 ')mod2” = (z — (2% — 2°7!))mod 2”7 = (x — 25~") mod 2. Thus
by adding 257! to the average value we can compensate the case when 2d! causes an
overflow in B bits. For example encoding the (unsigned) values (200, 0) in 8 bits results in
7 =100+ 128 = 228 and d”/ = —56 (see above; note that the average coefficients have the
same sign as the original data, whereas the detail coefficients are always signed), which leads
to reconstruction values ;" = (228 + 5,(—56 4 1)) mod 256 = (228 — 28) mod 256 = 200
and ¢} = (228 — 5,(—56)) mod 256 = (228 + 28) mod 256 = 256 mod 256 = 0 and we’re
indeed able to reconstruct the correct values (200, 0) in the least significant 8 bits.

Appendix B

Wavelet Filters

This part of the appendix lists the wavelet filter coefficients h; for the various wavelet types
used in the compression engine. All filter coefficients are normalized such that Y h; = V2
and S h? = 1, as required to use the same coefficients for transformation and inverse
transformation without additional rescaling. In addition to the filter coefficients, the sum
over their absolute values is also given for each filter; this is useful for the error propagation
analysis in section 3.4.1.

B.1 Daubechies Wavelets

These are the filter coefficients for Daubechies wavelets with 4-20 taps. They can be found
in e.g. [18, 47].

153

Daubechies 4-tap Daubechies 8-tap

ho | 0.4829629131445341 ho | 0.2303778133088964

hy | 0.8365163037378079 hy | 0.7148465705529154

hy | 0.2241438680420134 hy | 0.6308807679398587

hs | -0.1294095225512604 hy | -0.0279837694168599

S |hi] | 1.6730326074756159 hy | -0.1870348117190931

hs | 0.0308413818355607

Daubechies 6-tap he | 0.0328830116668852

ho | 0.3326705529500825 hz | -0.0105974017850690

hy 0.8068915093110924 2 |ha| | 1.8654455282251383
hy | 0.4598775021184914
hs | -0.1350110200102546
hy | -0.0854412738820267
hs | 0.0352262918857095
> |hi| | 1.8551181501576572

154 APPENDIX B. WAVELET FILTERS
Daubechies 10-tap Daubechies 14-tap
ho | 0.1601023979741929 ho | 0.0778520540850037
hi | 0.6038292697971895 hi | 0.3965393194818912
hy | 0.7243085284377726 hy | 0.7291320908461957
hsy | 0.1384281459013203 hs | 0.4697822874051889
hy | -0.2422948870663823 hy | -0.1439060039285212
hs | -0.0322448695846381 hs | -0.2240361849938412
he | 0.0775714938400459 he | 0.0713092192668272
hy | -0.0062414902127983 hy | 0.0806126091510774
hg | -0.0125807519990820 hs | -0.0380299369350104
hg | 0.0033357252854738 hg | -0.0165745416306655
S 1hil | 2.0009375600988957 hio | 0.0125509985560986
hii | 0.0004295779729214
Daubechies 12-tap hiz | -0.0018016407040473
ho | 0.1115407433501095 hiz | 0.0003537137999745
hy 0.4946238903984533 2 lha| | 2.2629101787572639
hy | 0.7511339080210959
hs 0.3152503517091982 Daubechies 16-tap
hy | -0.2262646939654400 ho | 0.0544158422431072
hs | -0.1297668675672625 hy | 0.3128715909143166
he | 0.0975016055873225 hy | 0.6756307362973195
hy | 0.0275228655303053 hs | 0.5853546836542159
hg | -0.0315820393174862 hy | -0.0158291052563823
hg | 0.0005538422011614 hs | -0.2840155429615824
hip | 0.0047772575109455 he | 0.0004724845739124
hip | -0.0010773010853085 hy | 0.1287474266204893
S Jhd | 2.1915953662440892 hg | -0.0173693010018090
hg | -0.0440882539307971
hio | 0.0139810279174001
hii | 0.0087460940474065
hiy | -0.0048703529934520
hiz | -0.0003917403733770
his | 0.0006754494064506
his | -0.0001174767841248
S Jh| | 2.1475771089761433

B.2. LEAST ASYMMETRIC WAVELETS

Daubechies 18-tap

ho
hq
ho
hs3
Py
hs

0.0380779473638778
0.2438346746125858
0.6048231236900955
0.6572880780512736
0.1331973858249883
-0.2932737832791663
-0.0968407832229492
0.1485407493381256
0.0307256814793385
-0.0676328290613279
0.0002509471148340
0.0223616621236798
-0.0047232047577518
-0.0042815036824635
0.0018476468830563
0.0002303857635232
-0.0002519631889427
0.0000393473203163

Daubechies 20-tap

ho
hy
ho
hs3
hy
hs
he
h7

2.3482216967582961

0.0266700579005473
0.1881768000776347
0.5272011889315757
0.6884590394534363
0.2811723436605715
-0.2498464243271598
-0.1959462743772862
0.1273693403357541
0.0930573646035547
-0.0713941471663501
-0.0294575368218399
0.0332126740593612
0.0036065535669870
-0.0107331754833007
0.0013953517470688
0.0019924052951925
-0.0006858566949564
-0.0001164668551285
0.0000935886703202
-0.0000132642028945

2.5305998542309207

B.2 Least Asymmetric Wavelets

These are the filter coefficients
can be found in e.g. [18].

Least Asymmetric 8-tap

for the Least Asymmetric wavelets with 820 taps. They

ho
hi
ho
hs3
hy

-0.0757657147896339
-0.0296355276460688
0.4976186676266057
0.8037387518083272
0.2978577956066951
-0.0992195435773194
-0.0126039672623100
0.0322231006041961

Least Asymmetric 10-tap

ho
hi
ho
hs3
hy

1.8486630689211563

0.0273330683451645
0.0295194909260734
-0.0391342493025834
0.1993975339769955
0.7234076904038076
0.6339789634569490
0.0166021057644243
-0.1753280899081075
-0.0211018340249298
0.0195388827353869

1.8853419088444219

156

Least Asymmetric 12-tap

ho
hq
ho
hs3
Py
hs
he
h7
hs
hg
h1o
hi1

0.0154041093273377
0.0034907120843304
-0.1179901111484105
-0.0483117425859981
0.4910559419276396
0.7876411410287942
0.3379294217282401
-0.0726375227866000
-0.0210602925126954
0.0447249017707482
0.0017677118643983
-0.0078007083247650

> Al

1.9498143170899580

Least Asymmetric 14-tap

ho
h1
ho
hs3
hy
hs
he
h7
hs
hg
h1o
h11
hio
hi3

0.0026818145681163
-0.0010473848889657
-0.0126363034031523

0.0305155131666126

0.0678926935015956
-0.0495528349370399

0.0174412550871095

0.5361019170907605

0.7677643170045544

0.2886296317509771
-0.1400472404427000
-0.1078082377036144

0.0040102448717032

0.0102681767084966

> Al

2.0363975651253980

APPENDIX B. WAVELET FILTERS

Least

Asymmetric 16-tap

ho
hy
ho
hs3
hy
hs
he
h7

0.0018899503329007
-0.0003029205145516
-0.0149522583367926

0.0038087520140601

0.0491371796734768
-0.0272190299168137
-0.0519458381078751

0.3644418948359564

0.7771857516997479

0.4813596512592012
-0.0612733590679088
-0.1432942383510542

0.0076074873252848

0.0316950878103452
-0.0005421323316355
-0.0033824159513594

2.0200379475289640

Asymmetric 18-tap

0.0010694900326538
-0.0004731544985879
-0.0102640640276849

0.0088592674935117

0.0620777893027638
-0.0182337707798257
-0.1915508312964873

0.0352724880359345

0.6173384491413522

0.7178970827642257

0.2387609146074181
-0.0545689584305765

0.0005834627463312

0.0302248788579895
-0.0115282102079848
-0.0132719677815332

0.0006197808890549

0.0014009155255716

2.0139954764194874

B.3. COIFLET WAVELETS

Least Asymmetric 20-tap

157

ho
ha
ho
hs3
Dy
hs
he
h7
hs
ho

0.0007701598091030
0.0000956326707837
-0.0086412992759401
-0.0014653825833465
0.0459272392237649
0.0116098939129724
-0.1594942788575307
-0.0708805358108615
0.4716906668426588
0.7695100370143387

B.3 Coiflet Wavelets

hio 0.3838267612253822
hi1 | -0.0355367403054689
hia | -0.0319900568281631
his 0.0499949720791560
hi4 0.0057649120455518
his | -0.0203549398039460
his | -0.0008043589345370
hi7 0.0045931735836703
his 0.0000570360843390
hig | -0.0004593294205481
> |hi] | 2.0734674063120626

These are the filter coefficients for Coiflet wavelets with 6-30 taps. They can be found in

Coiflet 18-tap

ho | -0.0037935128644910
hi | 0.0077825964273254
hy | 0.0234526961418362
hs | -0.0657719112818552
hs | -0.0611233900026726
hs | 0.4051769024096150
he | 0.7937772226256168
hy | 0.4284834763776167
hs | -0.0717998216193117
hy | -0.0823019271068856
hio | 0.0345550275730615
hi1 | 0.0158805448636158
hiy | -0.0090079761366615
hiz | -0.0025745176887502
his | 0.0011175187708906
his | 0.0004662169601129
hig | -0.0000709833031381
hir | -0.0000345997728362
S kil | 2-0071708419262930

e.g. [18].
Coiflet 6-tap
ho -0.0727326176845812
hy 0.3378976539641091
ho 0.8525719987812369
hs 0.3848648371898933
hy -0.0727329632844261
hs -0.0156557277419281
S lhil | 1.7364557986461744
Coiflet 12-tap
ho 0.0163873364635975
h1 -0.0414649367819499
ha -0.0673725547222730
hs 0.3861100668229387
hy 0.8127236354492816
hs 0.4170051844236111
hg -0.0764885990786583
h7 -0.0594344186467304
hg 0.0236801719464430
ho 0.0056114348194203
hip | -0.0018232088707114
hi1 | -0.0007205496433577
> |hi| | 1.9088220976689729

158
Coiflet 24-tap
ho 0.0008923136685824
hq -0.0016294920126020
ho -0.0073461663276432
hs 0.0160689439647787
hy 0.0266823001560570
hs -0.0812666996808907
he -0.0560773133167630
hy 0.4153084070304911
hs 0.7822389309206136
ho 0.4343860564915321
hio | -0.0666274742634348
hi1 | -0.0962204420340021
hio 0.0393344271233433
his 0.0250822618448678
hi4 | -0.0152117315279485
his | -0.0056582866866115
h1g 0.0037514361572790
hi7 0.0012665619292991
his | -0.0005890207562444
hig | -0.0002599745524878
hao 0.0000623390344610
ho1 0.0000312298758654
hoo | -0.0000032596802369
hos | -0.0000017849850031
S lhil | 2.0759968540210383

APPENDIX B. WAVELET FILTERS

Coiflet 30-tap

-0.0002120808398259
0.0003585896879330
0.0021782363583355

-0.0041593587818186

-0.0101311175209033
0.0234081567882734
0.0281680289738655

-0.0919200105692549

-0.0520431631816557
0.4215662067346896
0.7742896037334737
0.4379916262173834

-0.0620359639693546

-0.1055742087143175
0.0412892087544753
0.0326835742705106

-0.0197617789446276

-0.0091642311634348
0.0067641854487565
0.0024333732129107

-0.0016628637021860

-0.0006381313431115
0.0003022595818445
0.0001405411497166

-0.0000413404322768

-0.0000213150268122
0.0000037346551755
0.0000020637618516

-0.0000001674428858

-0.0000000951765727

2.1289452161382330

Appendix C

Compression Parameters

This part of the appendix explains all parameters of the compression engine’s dynamic
parameter system described in section 3.6, ordered by module. The first column con-
tains the parameter keywords, the second their types, the third their default values and
the last a short description. Parameter strings for the engine are formed as comma-
separated pairs of keyword=value, as explained in section 3.6. For example snr=8000
activates signal-to-noise termination for zerotree quantization with a threshold value of
8000, predintra=hyperplane,hypernorm=2 activates the hyperplane intrachannel predic-
tor for all channels using the third dimension as hyperplane normal and predinter=delta,
intermap="0:1,2:1" activates the delta interchannel predictor and uses the second chan-
nel to predict the first and the third.

Keyword | Type | Default | Description
zlevel int 6 The ZLib compression level (0...9)

Figure C.1: Parameters for ZLib compression stream

Keyword | Type | Default | Description

wavestr | string z1lib The compression stream name to use: none, rle,
zlib or arith
mrlevels int 0 Maximum number of hierarchical levels to do mul-

tiresolution analysis on. 0 means all levels
banditer | string | leveldet | The name of the band iterator. Possible values:
isolevel, leveldet and isodetail

Figure C.2: Parameters for wavelets

159

160

APPENDIX C. COMPRESSION PARAMETERS

Keyword

Type

Default

Description

wqtype

enhancelv

qwavdbg

string

nt

nt

zerotree

The wavelet quantization type to use. Possible
values are perband and zerotree. zerotree is
much more efficient regarding storage space, but
involves rather much overhead. perband is simpler
but compresses worse and is harder to configure
Number of hierarchical levels (starting from coars-
est one) over which to enhance wavelet-coefficients
at the boundary (to avoid boundary artefacts at
low rates). 0 disables it

Level for debug-version: perform additional statis-
tics during encoding; higher levels do everything
lower levels do. 1: residual and logarithmic his-
togram; 2: linear histogram for all bands; 3: effect
of zeroing each band on signal-to-noise ratio

Figure C.3:

Parameters for lossy wavelets

Keyword

Type

Default

Description

qrtype

qntype
bitscale

cutoff

nullzone

relgbits

string

string
double

double

double

string

const

linear
1.0

1.0

0.0

The quantizer type (statistics module) setting the
bits per band. Values are const, linear, expnt,
gauss and custom, where custom can’t be selected
directly (see relgbits)

The quantization type, either linear or expnt
Set the scaling factor of the bit allocation curve
relative to the size of the base type

The band number relative to the total number of
wavelet bands starting from which all bands are
ignored (quantized to 0)

Coefficients whose absolute value is smaller than
nullzone are set to 0

The string is a comma-separated (= the string
must be enclosed in double quotes) list of float-
ing point values, encoding the number of bits rel-
ative to the number of bits in the base type each
wavelet band should be encoded with. Implicitly
sets qrtype to custom

Figure C.4: Parameters for homogeneous lossy wavelet quantization

161

Keyword

Type

Default

Description

predinter

predintra

intermap

intralist

hypernorm

predweight

string

string

string

string

int

double

0.5

The name of the interchannel predictor which
correlates cells across channels (— atomic types
within structured types). Possible values: delta
(normal difference) and scaledelta (rescale to
same dynamic range, then use difference)

The name of the intrachannel predictor which cor-
relates cells with their spatial neighbours. Possi-
ble values: hyperplane (predict from previous hy-
perplane, e.g. previous scanline in a 2D image),
neighbours (predict from arithmetic average of
all neighbouring cells already seen) and weighted
(additionally weigh the neighbouring cell values
according to their offset in each dimension)
Comma-separated list of channel mappings of
the form ch-num:pred-num, where ch-num is
the number of the channel being mapped and
pred-num is the number of the channel it’s pre-
dicted by. e.g. typical for RGB images, where
green predicts red and blue: 0:1,2:1
Comma-separated list of channel numbers where
intrachannel prediction is used. If the first char-
acter is an exclamation mark, the inverse list is
used

For intrachannel hyperplane prediction: the num-
ber of the dimension orthogonal to the (moving)
predictor hyperplane, i.e. the direction in which
prediction takes place

For intrachannel weighted prediction: the amount
by which a cell weight is multiplied for each offset
0 in a dimension, starting with a weight of 1

Figure C.5: Parameters for predictors

162 APPENDIX C. COMPRESSION PARAMETERS
Keyword | Type | Default | Description
zttype string | bandl | The type of the zerotree coder to use. band1 is one-
pass with a four symbol alphabet, whereas band?2 is
two-pass with dominant pass (four symbol alpha-
bet) and subordinate pass (two symbol alphabet)
snr double led The signal-to-noise ratio to use for the encoding
of wavelet coefficients. Higher values mean better
quality
psnr double 0 The peak signal-to-noise ratio to use for the en-
coding of wavelet coefficients. Higher values mean
better quality, 0 disables it
residuum | double 0 The maximum residual per cell to use during en-
coding. Lower (positive) values mean better qua-
lity, 0 disables it
Figure C.6: Parameters for zerotree lossy wavelet quantization
Keyword | Type | Default | Description
exactformat | int 0 If exactformat is 0, the transfer format will only

be used by the server for transfer compression if
the data was stored uncompressed in the database;
it it’s # 0, the server will always repack the data

to the exact format requested by the client

Figure C.7: Parameters for client-server communication

